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Supplemental Material 

Exclusions and Data Cleaning, Study 1 

Our Study 1 initial sample consisted of 180 participants with complete data. Our first 

exclusion criterion excluded participants for intentional premature responding (i.e., “clicking 

through” to finish the study sooner), defined as making 50 or more responses under 100ms in the 

course of completing all tasks and/or making 30 or more responses under 100ms within any of 

those individual tasks (n=17). Our second exclusion criterion for participants with complete data 

excluded participants for failing to follow task instructions, defined as making errors on over half 

the congruent trials within any conflict task and/or failing to maintain at least 70% accuracy in 

indicating the arrow direction in the stop signal task (n=6). Finally, research assistants blind to 

study hypotheses manually inspected the remaining participants’ raw data files for haphazard 

responding (e.g., strings of very fast responses using the same response key); n=3 participants 

were identified as responding haphazardly, and these participants were thus excluded. These 

exclusion criteria resulted in a final sample of 154 participants for analysis.  

Using all 180 Study 1 participants (i.e., not excluding any Study 1 participants) did not 

alter the primary conclusion: Inhibition task performance was better described by two factors 

than by a single factor. In particular, a one-factor solution was a marginally unacceptable fit to 

the data, χ2(14) = 22.59, p=.07, whereas a two-factor solution was an acceptable fit to the data, 

χ2(8) = 10.19, p=.25, and a marginally better fit to the data than the one-factor solution, Δχ2(6) = 

12.40, p=.05. 

Exclusions and Data Cleaning, Study 2 



Our Study 2 initial sample consisted of 328 participants with complete data. Our first 

exclusion criterion excluded participants for intentional premature responding (i.e., “clicking 

through” to finish the study sooner), defined as making 50 or more responses under 100ms in the 

course of completing all tasks and/or making 30 or more responses under 100ms within any of 

those individual tasks (n=28). Our second exclusion criterion for participants with complete data 

excluded participants for failing to follow task instructions, defined as making errors on over half 

the congruent trials within any conflict task and/or failing to maintain at least 70% accuracy in 

indicating the arrow direction in the stop signal task (n=15). Finally, research assistants blind to 

study hypotheses manually inspected the remaining participants’ raw data files for haphazard 

responding (e.g., strings of very fast responses using the same response key); n=6 participants 

were identified as responding haphazardly, and these participants were thus excluded. These 

exclusion criteria resulted in a final sample of 279 participants for analysis. 

Using all 328 Study 2 participants (i.e., not excluding any Study 2 participants) did not 

alter the primary conclusion: Inhibition task performance was better described by two factors 

than by a single factor. In particular, a one-factor solution was an unacceptable fit to the data, 

χ2(54) = 103.98, p<.001, whereas a two-factor solution was a marginally acceptable fit to the 

data, χ2(43) = 56.18, p=.09, and a significantly better fit to the data than the one-factor solution, 

Δχ2[9] = 47.80, p<.001. 

Descriptive Statistics for Study Variables 

Study 1 

Variable N Mean SD Min. Max. Skew Kurtosis 

Corsi Span 154 7.10 1.34 2 10 -0.2 1.71 

Digit Span 154 7.16 1.41 2 10 -0.83 1.78 

Go/No-Go Errs. of Commission 154 16.28 8.49 2 41 0.6 -0.11 

SART Errors of Commission 154 11.27 6 0 26 0.32 -0.42 

Simon Interference RT Effect 154 49.25 19.65 -0.11 97.29 0.1 -0.57 



Stop-Signal Reaction Time 154 215.04 66.37 26.71 447.46 0.47 1.15 

Stroop Interference RT Effect 154 151.07 75.24 8.83 341.65 0.3 -0.71 

 

 

Figure S1. Distributions of each Study 1 task outcome. 

Study 2 

Variable N Mean SD Min. Max. Skew Kurtosis 

Corsi Span 279 7.24 1.17 2 10 -0.25 1.8 

d2 Time Controlling Acc. 279 0.03 0.95 -3.98 2.59 -0.65 1.78 

Digit Span 279 7.14 1.44 2 11 -0.87 2.3 

Emot. Ster. Interfere. RT Effect 279 22.82 93.46 -286.94 321.83 0.07 0.83 

Flanker RT Interference Effect 279 57.18 25.18 -16.94 142.12 0.62 1.04 

Go/No-Go Errs. of Commission 279 18.33 8.83 1 43 0.43 -0.5 

SART Errors of Commission 279 11.91 6.07 0 25 0.23 -0.93 



Simon Interference RT Effect 279 44.22 25.78 -31.87 136.9 0.2 0.71 

Simple RT 279 376.16 43.89 283.38 505.59 0.79 0.2 

Stop-Signal Reaction Time 279 216.38 69.12 10.42 530.08 0.28 2.21 

Stroop Interference RT Effect 279 80.8 68.82 -16.28 334.33 1.02 0.62 

Vigilance Errors of Omission 279 2.77 2.23 0 9 0.73 -0.09 

 

 
Figure S2. Distributions of the primary outcome from each cognitive task examined Study 2. 



 

Analyses on Normality-Corrected Variables 

We next attempted to determine whether any skewness or other nonnormality contributed 

to our results by conducting analyses on normality-corrected variables. To transform variables to 

a normal distribution, we used the bestNormalize package in R. We conducted two sets of 

transformations. First, using the bestNormalize() function with the allow_orderNorm argument 

set to false and both Lambert W arguments set to true in order to automatically transform each 

variable into the distribution that most approximates a normal distribution for that specific 

variable using more typical transformations (i.e., arcsinh(x), Box-Cox, center+scale, exp(x), 

Lambert W × F, log10(x+a), sqrt(x+a), Yeo-Johnson) according to the Pearson P test for 

normality. Second, using the orderNorm() function—which quantile ranks each variable 

according to a normal distribution and thus guarantees a normal distribution in the absence of 

ties—after adding a small amount of random noise (i.e., +rnorm(nrow(dat),0,0.0001)) to remove 

ties from the data (noise was not added to the first transformation analyses). 

These analyses did not change any result indicating that separate factors of response 

inhibition and information gating were needed to account for the data. In particular, for the 

transformations excluding orderNorm, both Study 1 and Study 2 were better fit by a two-factor 

solution than a one-factor solution, p=.015, and p<.001, respectively, with loadings similar to the 

main text—indicative of response inhibition and information gating factors. Similarly, using the 

orderNorm function, both Study 1 and Study 2 were better fit by a two-factor solution than a 

one-factor solution, p=.016, and p<.001, respectively, with loadings similar to the main text—

indicative of response inhibition and information gating factors. Interestingly, using the 

orderNorm transformation alone, Study 2 (but not Study 1) was better fit by a three-factor 



solution than a two-factor solution, p=.015; this third factor was indicated almost exclusively by 

digit span and Corsi span, with the other two factors consisting of response inhibition and 

information gating. Thus, one out of four combinations of transformations and studies suggested 

the separation of working memory storage from information gating. In short, results from 

transformed variable analyses were entirely consistent with the idea that response inhibition is a 

separate construct from information gating, but inconsistent evidence suggested that working 

memory storage may require a third factor to account for the data. 

Study 1 Additional Analyses 

We next attempted to determine the relative fits of a one-factor and a two-factor model to 

these data using confirmatory factor analysis, which removes cross-loadings between factors that 

are present in exploratory factor analyses. As in the exploratory factor analysis, a one-factor 

model was a poor fit to the data, χ2(14) = 23.71, p = .050, CFI = .697, RMSEA = .067, BIC = 

3093.3, SABIC = 3049.0, AIC = 3050.8, whereas an uncorrelated two-factor model with a 

response inhibition factor (indicated only by go/no-go commissions, SART commissions, and 

stop-signal reaction time) and an information gating factor (indicated only by Stroop interference 

effects, Simon interference effects, digit span forward, and Corsi span) was an excellent fit to the 

data, χ2(14) = 13.16, p = .514, CFI = 1.000, RMSEA = .000, BIC = 3082.8, SABIC = 3038.5, 

AIC = 3040.3. Because these two models were nonnested and had equivalent degrees of 

freedom, they could not be compared via likelihood ratio test, but by all metrics (Δχ2(0) = -10.55, 

ΔBIC = -10.6, ΔSABIC = -10.6, ΔAIC = -10.6) the two-factor model was a notably better fit to 

the data. Figure S3 depicts this two-factor model and its loadings. 



 

Figure S3. Confirmatory factor analysis for Study 1. This model was 

an excellent fit to the data, and all depicted loadings were significant. 

 

Consideration of Outcome Type as an Explanation 

Next, we examined whether our data were better explained by outcome type (i.e., 

response time vs. accuracy) than inhibition. To test this, we created a latent factor for accuracy—

indicated by go/no-go commissions, SART commissions, forward digit span, and forward Corsi 

span—as well as a latent factor for response speed—indicated by Stroop RT effects, Simon RT 

effects, and stop signal RT. This model was a poor fit to the data, χ2(13) = 23.37, p = .037, CFI = 

0.677, RMSEA = .072, BIC = 3098.0, SABIC = 3050.6, AIC = 3052.5. Comparing this model to 

the two-factor inhibition model described above (i.e., shown in Figure S3) is not possible via 

likelihood ratio test because these two models are not nested. Nonetheless, by all metrics, the 

two-inhibition-factor model was a notably better fit to the data than the two-outcome-factor 

model, Δχ2(1) = -10.21, ΔBIC = -15.3, ΔSABIC = -12.1, ΔAIC = -12.2. 



Finally, we examined whether accounting for outcome type resulted in an acceptable 

three-factor model—response speed, accuracy, and a single inhibition factor—or whether the fit 

of a four-factor model—response speed, accuracy, response inhibition, information gating—was 

better than the two-factor inhibition model described above (shown in Figure S3). However, 

these three- and four-factor models were not identifiable. Therefore, the best model for these data 

fit inhibition via two latent factors. 

Study 2 Additional Analyses 

Exploratory Factor Analysis 

An exploratory factor analysis of 12 tasks potentially loading on inhibitory control was 

conducted using the primary outcome measures from each of these tasks. A one-factor solution 

was a very poor fit to the data, χ2(54) = 101.71, p < .001, whereas a two-factor solution provided 

a good fit to the data, χ2(43) = 46.31, p = .337. A three-factor solution did not significantly 

improve model fit over the two-factor solution, Δχ2(10) = 15.87, p = .103, nor did a four-factor 

solution (Δχ2[19] = 27.40, p = .096), five-factor solution (Δχ2[27] = 38.50, p = .070), six-factor 

solution (Δχ2[34] = 41.73, p = .170), or seven-factor solution (Δχ2[40] = 44.45, p = .256). 

Importantly, because a two-factor solution provided a satisfactory fit to the data, no additional 

factors are required to explain the latent structure of these data, nor did any additional factors 

significantly improve the fit of the EFA to these data. This entails that task outcomes sometimes 

argued to rely on additional or other cognitive processes—such as the forward span tasks, simple 

reaction time task, or emotional interference task—did not require and would not benefit from 

additional factors (e.g., a working memory factor, or a processing speed factor) to explain their 

performance; instead, performance on these tasks at a latent level was satisfactorily explained 

with reference only to these two latent factors. Presumably, however, if additional tasks of these 



kinds (e.g., additional forward span tasks) had been included, then additional factors would have 

been necessary to explain the data. Scree plots and SABIC values are shown in Figure S4.  

 

Figure S4. Eigenvalues for factors from factor analysis with all possible factors estimated, 

and SABIC values for factor solutions. SABIC could not be computed for more than seven 

factors given the number of variables included. The two-factor solution was preferred by the 

SABIC and χ2 analyses.  

 

Loadings from the exploratory factor analysis are presented in Table S3. In brief, the 

loadings on the first factor indicated a response inhibition factor, with go/no-go errors of 

commission and SART errors of commission displaying the largest loadings. The loadings on the 

second factor indicated an information gating factor, with Simon RT interference effects, Stroop 

RT interference effects, and reaction time displaying the largest loadings. Of note, the Stroop 



task loaded on both factors, but it displayed an inverse loading on the response inhibition factor, 

indicating that larger Stroop RT interference effects were associated with better response 

inhibition.   

Table S3 

Exploratory Factor Analysis Loadings for Each Task 

 

Note: Loadings that were significant in the confirmatory factor analysis are shown in bold. 

Factors were rotated using varimax rotation, but identical primary loadings with 

approximately equal loading values were obtained without rotation or with promax and 

oblimin rotations. 
 

We also conducted sensitivity analyses to determine whether a two-factor solution was 

required only because of the commonality between the sustained attention to response task and 

the go/no-go. In this, we excluded either one of the aforementioned tasks and conducted the 

exploratory factor analysis on the remaining tasks. When the SART was excluded, a one-factor 

was a poor fit to the data, χ2(44) = 69.24, p = .008, whereas a two-factor solution was an 

acceptable fit to the data, χ2(34) = 42.89, p = .141. Similarly, when excluding the go/no-go, a 

one-factor solution was a poor fit to the data, χ2(44) = 63.77, p = .027, whereas a two-factor 

solution was an acceptable fit, χ2(34) = 39.52, p = .237. Therefore, the reason that the data were 

 

Factor 1: 

Response 

Inhibition 

Factor 2: 

Info. 

Gating 

Go/No-Go (# Errors of Commission) .67  -.05 

Sustained Attention to Response Task (# Errors of Commission) .58  -.08 

Stop Signal Task (Stop Signal Reaction Time) .26 .16 

Vigilance Task (# Errors of Omission) .19 .19 

Stroop Task (Interference Effect, RT) -.21 .46 

Simon Task (Interference Effect, RT)  .04 .40 

Simple Reaction Time Test (RT)  .03 .38 

d2 Test of Attention (Time Covarying Accuracy)  -.02 .26 

Emotional Sternberg Task (Emotional Interference Effect, RT)  -.02 .25 

Digit Span (Forward Span)  -.09 -.21 

Corsi Block (Forward Span)  -.11 -.17 

Flanker Task (Interference Effect, RT) .14  .00 



best fit by a two-factor solution was not that the commonality between the SART and go/no-go 

required a second factor; excluding either of those two tasks still required a two-factor solution 

to fit the data.1 

Initial Confirmatory Factor Analysis 

Prior to the confirmatory factor analysis presented in the main text, we first constructed a 

CFA from the loadings in the EFA, presented above. Indicators of each factor were those with an 

EFA loading of > ± .118, as this was the smallest correlation our study could detect as significant 

given our sample size. However, EFA loadings differ from CFA loadings due to a lack of cross-

loadings, entailing that some EFA loadings of > .118 were no longer significant in the CFA. 

Nonsignificant paths were removed from this CFA, thus trimming flanker interference effects—

which did not significantly load on either latent factor—and the correlation between response 

inhibition and information gating. The model was an excellent fit to the data, χ2(41) = 39.16, p = 

.553, CFI = 1.000, RMSEA = .000, BIC = 8713.7, SABIC = 8634.4, AIC = 8622.9. The model 

indicated that response inhibition and information gating are distinct at a latent level: The 

correlation between response inhibition and information gating was nonsignificant, r < .01, p = 

.957, and fixing it to zero did not worsen the fit of the model (BIC = 8713.7) compared to a 

model that estimated the correlation (χ2[40] = 39.15, p = .508, CFI = 1.000, RMSEA = .000, BIC 

= 8719.3, SABIC = 8636.9, AIC = 8624.9), |Δχ2|(1) = 0.00, p = .957, ΔBIC = -5.6, ΔSABIC = -

2.5, ΔAIC = -2.0. The resulting model is presented in Figure S5.  

 

 

 
1 When excluding the 104 participants with emotional interference effects < 0 (leaving n=175), a one-factor solution 

was still an unacceptable fit to the data, χ2(54) = 95.13, p < .001, whereas a two-factor solution was an acceptable fit 

to the data, χ2(43) = 51.24, p = .182. Similarly, removing Sternberg emotional interference from the factor analysis 

entirely did not alter these results: a one-factor solution was still an unacceptable fit to the data, χ2(44) = 88.38, p < 

.001, whereas a two-factor solution was an acceptable fit to the data, χ2(34) = 40.23, p = .214 



 

Figure S5. Structural equation model derived from trimming nonsignificant paths from the 

exploratory factor analysis. The model was an excellent fit to the data. The correlation between 

response inhibition and information gating (not depicted) was nonsignificant, r < .01, p = .957, 

and fixing it to zero—as shown here—did not worsen model fit, |Δχ2|(1) = 0.003, p = .957 (and 

by some metrics, it improved model fit, ΔBIC = -5.6). Both digit span forward and Corsi span 

are coded such that higher scores indicate better performance, whereas the rest of the tasks’ 

outcomes are coded such that higher scores indicate worse performance (e.g., greater 

interference or more errors). 

 

As shown in Figure S5, some of the variables in the initial CFA loaded onto both 

response inhibition and information gating (i.e., the stop-signal task and the vigilance task loaded 

onto both factors in the same direction, and the Stroop task loaded onto both factors in opposite 

directions). Therefore, in order to determine if response inhibition and information gating were 

separable without any shared loadings, we estimated the model with each task loading onto only 

its strongest factor. This was the first CFA presented in the main text. This main-text CFA model 

was a worse fit by most metrics than the above model with some shared indicators (Figure S3), 



|Δχ2|(2) = 9.64, p = .008, ΔBIC = -1.6, ΔSABIC = 4.8, ΔAIC = 5.7. The analyses presented here 

were moved for space considerations in the manuscript. 

Comparison with the Unity Model of Executive Functions 

The primary difference between the best fitting model to our tasks and the unity model of 

executive functions is that the unity model of executive functions views response inhibition as 

equivalent to the common executive function (e.g., goal-directed information gating and/or 

amplification) at a latent level; indeed, in the unity model, inhibition is no different from the 

common executive function supporting performance on all executive function tasks in the unity 

model. Therefore, we compared a model with a single inhibition factor (i.e., the unity model) 

being indicated by all of the tasks with our two-factor model described above (shown in Figure 

S5). In this analysis, we found that the two-factor model (fit statistics provided above) was a 

significantly better fit than the unity model (χ2[44] = 93.31, p < .001, CFI = .550, RMSEA = 

.063, BIC = 8751.0, SABIC = 8681.2, AIC = 8671.1), |Δχ2|(3) = 54.15, p < .001, ΔBIC = -37.3, 

ΔSABIC = -46.8, ΔAIC = -48.2. Crucially, however, exploratory analyses revealed that when 

both of the tasks that selectively loaded on the response inhibition factor in the best-fitting 

model—the go/no-go and the SART—were removed from the model, the two-factor model 

(χ2[25] = 31.64, p = .169, CFI = .870, RMSEA = .031, BIC = 7174.1, SABIC = 7109.0, AIC = 

7100.7) did not significantly differ from the unity model (χ2[27] = 34.86, p = .143, CFI = .846, 

RMSEA = .032, BIC = 7166.0, SABIC = 7110.7, AIC = 7101.5), |Δχ2|(2) = 3.22, p = .200, ΔBIC 

= 8.0, ΔSABIC = 1.7, ΔAIC = 0.8. This indicates that without including variables that selectively 

load on response inhibition (e.g., errors of commission on the go/no-go or SART), structural 



equation models examining the latent structure of inhibitory control may be unable to detect 

response inhibition as a latent factor distinct from information gating.2 

Restriction of Variables 

Because many of the tasks used in this study may be controversial with respect to their 

utilization of inhibitory control, we ran analyses including only go/no-go commissions, SART 

commissions, stop-signal reaction time, Stroop interference, Simon interference, and emotional 

Sternberg interference. As in the above analyses, in exploratory factor analyses, a single factor 

was a poor fit to the data, χ2(9) = 29.27, p < .001, whereas a two-factor solution was a 

sufficiently good fit to the data, χ2(4) = 2.29, p = .683, and improved model fit relative to the 

one-factor solution, Δχ2(5) = 26.99, p<.001; a three-factor solution could not be compared to the 

two-factor solution due to insufficient degrees of freedom in the three-factor solution. 

Confirmatory factor analyses are presented in the main text. Loadings of the two-factor solution 

for the EFA are as follows: 

Table S4 

Exploratory Factor Analysis Loadings for Restricted Variables EFA 

 

Note: Loadings that were significant in the confirmatory factor analysis are shown in bold. 

Factors were rotated using varimax rotation, but identical primary loadings with 

approximately equal loading values were obtained without rotation or with promax and 

oblimin rotations. 

 
2 An additional exploratory factor analysis also found that when both the go/no-go and SART were excluded, a one-

factor solution was an acceptable fit to the data, χ2(35) = 45.07, p = .118. These results further support the idea that 

including either the go/no-go or the SART is necessary for detecting a response inhibition factor in factor analysis. 

 

Factor 1: 

Response 

Inhibition 

Factor 2: 

Info. 

Gating 

Go/No-Go (# Errors of Commission) .67  -.08 

Sustained Attention to Response Task (# Errors of Commission) .58  -.10 

Stop Signal Task (Stop Signal Reaction Time) .28 .14 

Stroop Task (Interference Effect, RT) -.16 .60 

Simon Task (Interference Effect, RT)  .06 .37 

Emotional Sternberg Task (Emotional Interference Effect, RT)  .01 .29 



 

Consideration of Outcome Type as an Explanation 

We first examined whether including latent variables indicated by outcomes of specific 

types (i.e., reaction time or accuracy-based outcomes) improved model fit. The latent variable for 

accuracy outcomes was indicated by go/no-go commissions, SART commissions, vigilance 

omissions, digit span, and Corsi span, whereas the latent variable for time-based outcomes was 

indicated by stop-signal reaction time, Simon interference RT effects, Stroop interference RT 

effects, simple RT, Sternberg emotional interference effects, and d2 time controlling accuracy 

(results did not differ d2 time controlling accuracy indicated accuracy as well, nor did results 

differ if this variable was removed from models entirely). In contrast to Study 1, a four-factor 

model with two outcome-indicated latent variables (accuracy, time-based) and two inhibition 

latent variables was a better fit to the data (χ2[30] = 12.49, p = .998, CFI = 1.000, RMSEA = 

.000, BIC = 8749.0, SABIC = 8634.8, AIC = 8618.3) than the two-factor inhibition model 

(shown in Figure S5; fit statistics provided above) by some metrics, Δχ2(11) = 26.66, p = .005, 

ΔAIC = -4.6, but not by others, ΔBIC = 35.3, ΔSABIC = 0.4. We examined whether this may 

have been because of a secondary outlet for the covariance between Corsi and digit span (the 

latent accuracy variable, present in the outcome-indicated model) not present in the two-factor 

inhibition model. Once the covariance between Corsi span and digit span was specified in both 

models, the two-factor inhibition model (χ2[40] = 29.43, p = .891, CFI = 1.000, RMSEA = .000, 

BIC = 8709.6, SABIC = 8627.2, AIC = 8615.2) was a better fit than the four-factor outcome type 

and inhibition model (χ2[29] = 15.62, p = .980, CFI = 1.000, RMSEA = .000, BIC = 8757.7, 

SABIC = 8640.4, AIC = 8623.4) by all indices, Δχ2(11) = 13.81, p = .244, ΔBIC = -48.1, 

ΔSABIC = -13.3, ΔAIC = -8.2. Similarly, when digit span and Corsi span were omitted from 



both models, the two-factor inhibition model (χ2[24] = 17.44, p = .829, CFI = 1.000, RMSEA = 

.000, BIC = 7116.4, SABIC = 7049.9, AIC = 7040.2) was a better fit than the four-factor 

outcome type and inhibition model (χ2[15] = 7.07, p = .956, CFI = 1.000, RMSEA = .000, BIC = 

7156.8, SABIC = 7061.6, AIC = 7047.8) by all indices, Δχ2(9) = 10.37, p = .322, ΔBIC = -40.4, 

ΔSABIC = -11.8, ΔAIC = -7.6. Therefore, adding latent factors for outcome type did not 

improve model fit over a two-factor inhibition-only model once the covariance between Corsi 

span and digit span was equated between models. 

More importantly, we examined whether a two-factor outcome type model (indicators for 

each outcome type described in the paragraph above) without an inhibition factor (χ2[43] = 

67.55, p = .010, CFI = 0.776, RMSEA = .045, BIC = 8730.8, SABIC = 8657.9 AIC = 8647.3) fit 

the data better than either the model shown in Figure S5 or the model shown in Figure 2. 

Because this model was not nested with either the Figure S5 model or the Figure 2 model, we do 

not provide p values for these model comparisons, but by every metric, the two-factor outcome-

type-only model was a worse fit than either two-factor inhibition model: versus the model shown 

in Figure S5, Δχ2(2) = 28.40, ΔBIC = 17.1, ΔSABIC = 23.5, ΔAIC = 24.4, and versus the model 

shown in Figure 2, Δχ2(0) = 18.76, ΔBIC = 18.8, ΔSABIC = 18.8, ΔAIC = 18.8. Results did not 

differ when the covariance between latent accuracy and latent RT was constrained to zero, nor 

did they differ, importantly, when the residual covariance between Corsi span and digit span was 

included in the outcome type model.  

Next, we examined whether a three-factor model—with two outcome type factors 

(accuracy and time-based; indicators described above) and a single inhibition factor (indicated by 

all variables)—fit the data better than the models above. This model (χ2[31] = 26.90, p = .677, 

CFI = 1.000, RMSEA = .000, BIC = 8757.8, SABIC = 8646.8 AIC = 8630.7) looked like a 



response inhibition model, rather than a common executive function model: Only go/no-go 

commissions, SART commissions, and stop-signal reaction time loaded significantly onto the 

inhibition factor (loadings for Stroop, Simon, etc., were nonsignificant, ps>.160). More 

importantly, this model was a worse fit than the model shown in Figure S5 by all metrics suitable 

for comparing nonnested models, Δχ2(-10) = -12.2, ΔBIC = 44.1, ΔSABIC = 12.3, ΔAIC = 7.7, 

and it was a worse fit than the model shown in Figure 2 by all metrics suitable for comparing 

nonnested models, Δχ2(-12) = -21.90, ΔBIC = 45.7, ΔSABIC = 7.6, ΔAIC = 2.1. Most 

importantly, this three-factor model was a substantially worse fit by every metric than the 

nonnested four-factor model described above (i.e., with two outcome type factors and two 

inhibition factors), Δχ2(2) = 17.52, ΔAIC = 13.5, ΔBIC = 6.3, ΔSABIC = 12.6, showing that two 

inhibition factors are critical even when outcome type is controlled. 

Study 2 Supplemental Discussion 

Discussion of the above is as follows. 

Some unexpected and notable task loadings merit discussion. In particular, although 

vigilance task errors of omission primarily loaded onto the information gating factor and stop-

signal reaction time (SSRT) primarily loaded onto the response inhibition factor, as expected, the 

significant secondary loadings of both of these task outcomes onto the other inhibition factor 

may seem somewhat surprising (Stroop RT interference effects are discussed in the next 

paragraph). However, the characteristics of these tasks make these secondary loadings easily 

interpretable. In the vigilance task used in this study, there were very long waiting periods (up to 

15 seconds) that required attention to a potential target that appeared for only a very brief period 

of time (25 milliseconds). Thus, in addition to the primary demands the vigilance task made on 

information gating, eyeblinks and saccades were automatic, prepotent actions that needed to be 



inhibited for successful performance on this task, as one blink or saccade could cause a 

participant to miss a presented target (Caffier et al., 2003; Johns et al., 2009). Although 

speculative, the need to inhibit eyeblinks and saccades—or to overtly look in the direction of any 

possible distraction—could explain the secondary loading of vigilance omissions on the response 

inhibition factor. As for SSRTs from the stop signal task, SSRTs require including reaction time 

in calculation of SSRTs in order to estimate the time required to inhibit an activated response 

(Verbruggen et al., 2013; Verbruggen & Logan, 2009). Because reaction time requires 

information gating—indeed, simple reaction time loaded on the information gating factor in this 

study—the inclusion of reaction time in the method of calculating SSRT likely contributed to the 

secondary loading of this outcome on information gating. Importantly, though, the model 

estimating response inhibition and information gating as distinct latent executive functions was 

still an acceptable fit to the data when both of these variables had their secondary loadings fixed 

to zero. Therefore, although the secondary loadings of these variables were interesting, they are 

explainable, and their existence does not alter any of the primary conclusions of the current 

study. 

Alternate Analytic Approach 

 A reviewer recommended an alternative analytic approach, which we conducted at the 

second round of revisions. We believe that they were quite informative. We considered rewriting 

the manuscript main text results using the following, but we ultimately decided that it would be 

better to include this information in the supplement at this stage, and reference it as appropriate 

in the discussion and use it to better contextualize and understand our ambiguous results. 



These analyses approached our outcome data from a different perspective, where each 

task outcome was governed by both speed and response. Justification for this scoring is provided 

in the subsequent section. 

In particular, for each task, we divided proportion correct (i.e., accuracy) on (when 

possible, inhibition-related or difficult) trials by mean response time in seconds on (when 

possible, inhibition-unrelated or easy) correct trials. Higher scores thus represent better accuracy 

than would be expected for the speed of responding, and thus helps to control for decision 

boundary and speed-accuracy tradeoffs. So, for example: Stroop Outcome = Mean Accuracy on 

Incongruent Trials / Mean RT on Correct, Congruent Trials. Similarly: Go/No-Go Outcome = 

Mean Accuracy on No-Go Trials / Mean RT on Correct, Go Trials.  

- This strategy directly translates between Stroop, Simon, flanker, emotional Sternberg 

(negative as difficult/inhibition, neutral as easy/noninhibition), go/no-go, and SART.  

- For the digit and Corsi span tasks, we computed sum of total digits and squares correctly 

recalled across all trials, and divided those sums by mean RT on the first third of 

participants’ trials (i.e., in low-load trials). 

- For the vigilance task, we used accuracy on go (target) trials (as omissions were the 

primary outcome of interest) divided by reaction time on go trials; using total accuracy 

did not change any of the inferences or primary loadings described below (though the 

loading values changed slightly). 

- For d2, we divided mean trial accuracy ((hits – misses + correct rejects – false 

alarms)/(hits + misses + correct rejects + false alarms)) by mean trial RT. 

- For simple reaction time, we divided mean accuracy ((hits – misses – premature 

responses)/(hits + misses + premature responses)) by mean RT to hits. 



- For the stop-signal task, we used stop-signal reaction time and multiplied it by -1 so that 

higher values represented better performance, as in the other outcomes. 

Therefore, although the Stroop, Simon, flanker, emotional Sternberg, go/no-go, and 

SART are most similar, the basic strategy works for all tasks with outcomes that did not already 

combine response time and accuracy (i.e., those besides SSRT). We then reanalyzed our data. 

The results, described below, are much stronger and more compelling for our primary inference: 

more than a common executive function is needed to explain inhibitory control data.  

The bivariate correlation matrices for each study are as follows: 

 

Study 1: 

 Simon Stroop Corsi Digit Stop Sig. G/N-G 

Simon       

Stroop .58***       
Corsi .25**   .11         
Digit .14     .12     .16        
Stop Signal .15     .17*    -.02     .00       
Go/No-Go .33***  .31***  .05     .06     .22**    
SART .24**   .24**   .06     -.03     .30***  .24**   

 

Study 2: 

 Simon Stroop Flanker Sternberg Corsi Digit Smpl RT Vigilance d2 Stop Sig. G/N-G 

Simon            

Stroop .61***            
Flanker .41***  .41***           
Sternberg .32***  .39***  .30***          
Corsi .21***  .27***  .17**   .16**          
Digit .10     .12    .08     .19**  .30***        
Simple RT .32***  .34***  .34***  .23***  .15*    .12          
Vigilance .21***  .24***  .36***  .22***  .02     .02     .27***       
d2 .22***  .24***  .21***  .28***  .13*    .14*    .21***     .09        
Stop Signal .29***  .22***  .15*    .19**   .08     -.00     .09     .04     .11       
Go/No-Go .27***  .11     .19**   .05     .03     -.03     .14*     .15*    .06     .21***   
SART .28***  .12*    .23***  .12*    .08     .06     .17**     .05     .10     .23***  .40***  

 

The exploratory factor analyses for each study are as follows: 



 
Figure S6. 

Study 1 required two factors to explain the data, as in the primary analyses: one-factor 

χ2(14)=21.08, p=.0996, two-factor χ2(8)=5.14, p=.743, Δχ2(6)=15.94, p=.014. Three factors did 

not improve the Study 1 EFA fit, as in primary analyses: three-factor χ2(3)=0.84, p=.840, 

Δχ2(5)=4.30, p=.508. 

When all variables were included in Study 2, Study 2 required and was preferred by four 

three factors by χ2 (one-factor χ2[54]=137.52, p<.001; two-factor χ2[43]=74.97, p=.002; three-

factor χ2[33]=45.57, p=.071; four-factor χ2[24]=16.97, p=.850), and the fit to the data was not 

improved by both either χ2 (four- to five-factor comparison, Δχ2[8]=11.12, p=.195) and SABIC 

(see Figure S6) by adding a fifth factor.  

When the variables in Study 2 were restricted to those that were least controversial (i.e., 

go/no-go, SART, stop-signal, Stroop, flanker, emotional Sternberg, and Simon), which were also 

the variables most comparable in adjusting for RT in outcomes, only two factors were required 

and preferred by both χ2 (one-factor χ2[14]=66.41, p<.001, two-factor χ2(8)=5.96, p=.651, 



Δχ2(6)=60.44, p<.001; three-factor χ2[3]=1.34, p=.718, Δχ2[5]=4.62, p=.464) and SABIC (see 

Figure S6). The factor loadings (using varimax rotation) for these outcomes are as follows, with 

primary (i.e., strongest) loadings highlighted in bold: 

 

Study 1 

Variable 
Factor 

1 

Factor 

2 
Uniqueness 

Simon .84 .30 .21 

Stroop .56 .35 .56 

Corsi .29 -.03 .91 

Digit .15 .02 .98 

Stop-Signal RT -.03 .56 .68 

Go/No-Go .25 .43 .75 

SART .10 .52 .72 

 

 

Study 2 

Variable 
Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 
Uniqueness 

Simon .69 .32 .13 .11 .40 

Stroop .82 .05 .15 .14 .29 

Flanker .41 .24 .36 .12 .63 

Emot. Stern. .38 .08 .22 .27 .72 

Corsi .25 .02 -.01 .42 .76 

Digit .02 -.01 .04 .66 .57 

Simple RT .34 .13 .26 .19 .76 

Vigilance .15 .03 .77 -.01 .38 

d2 .26 .07 .05 .23 .87 

Stop-Signal RT .27 .31 -.02 .01 .83 

Go/No-Go .08 .62 .14 -.06 .59 

SART .10 .65 .01 .11 .56 

 

Study 2, Restricted Variables 

Variable 
Factor 

1 

Factor 

2 
Uniqueness 

Simon .70 .32 .40 

Stroop .85 .04 .28 

Flanker .48 .25 .71 

Emot. Stern. .46 .08 .79 

Stop-Signal RT .26 .30 .84 

Go/No-Go .09 .61 .62 

SART .12 .64 .57 



 

Notably, in a structural equation model separating the restricted variables tasks into their 

primary factors, the model—which, after accounting for residual covariances, was a good fit to 

the data, χ2(11)=18.50, p=.071, CFI: 0.979, RMSEA: 0.049—accounted for the covariance 

between go/no-go and SART, indicating that this factor was not an artifact of similarity between 

the go/no-go and SART: 

Figure S7. Restricted variables CFA in Study 2, loading 

onto their primary factor. All variables are coded such that 

higher values = better performance. All estimated paths 

were significant. 

 



In the combined multi-group two-study SEM analyses, an uncorrelated two-factor model 

was a poor fit to the data (χ2[47]=115.29, p<.001, CFI=0.825, RMSEA=.083), but Study 1’s 

exploratory factor analysis using this new scoring method suggested some overlap between the 

Simon task and response inhibition, and it further suggested that many of the response inhibition 

variables loaded on the goal-directed information gating and/or amplification factor as well. 

Therefore, we allowed all paths to load on the information gating factor, similar to the common 

executive function model. We found that this model, with all latent and residual variances 

constrained to equality across studies, was a good fit to the data, χ2(43)=50.64, p=.197, 

CFI=0.980, RMSEA=.029. This two-study model is shown below: 

Figure S8. Multi-study model using the alternate task scoring approach. 

All variables are coded such that higher values indicate better 

performance. All estimated paths were significant. 

 

Additionally, Study 2’s EFA suggested that digit and Corsi shared unique variance, so we 

fit a multi-group two-study confirmatory factor analysis akin to the unity model, with working 



memory maintenance as its own factor. This model, with all latent and residual variances 

constrained to equality across studies, was an excellent fit to the data, χ2(40)=29.99, p=.875, 

CFI=1.00, RMSEA<.001, though its smallest eigenvalue was near-zero. This two-study model is 

shown below: 

 

Figure S9. Multi-study model using the alternate task scoring approach. 

All variables are coded such that higher values indicate better 

performance. All estimated paths were significant. 

 

Together, these analyses strongly suggest that response inhibition is a distinct control 

process from what we are referring to as goal-directed information gating and/or amplification, 

which we believe is likely to be Miyake and Friedman’s common executive function. 

Justification for Alternate Task Scoring 



The ratio between inhibitory trial (e.g., no-go) accuracy and noninhibitory trial (e.g., go) 

mean RT has been validated and used as a measure of inhibitory control that adjusts for speed-

accuracy tradeoffs in a number of studies within fMRI and cognitive neuroscience literature 

(e.g., Cascio et al., 2022; Dotterer et al., 2021; Garcia-Egan et al., 2019; Gonzalez Alarm et al., 

2023; Hinton et al., 2018; Hirose et al., 2012; Tomlinson et al., 2020; Tompson et al., 2020). The 

studies that have taken this approach have largely used go/no-go tasks, given that go/no-go tasks 

cannot compute a RT difference score nor correct for speed-accuracy tradeoffs without this 

mixing-conditions approach—correct no-go trials have no response speed. It is for this reason 

that we used the measure we did: No other measure that adjusts for outcome type works well 

across all tasks most frequently taken to index inhibitory control via some outcome (i.e., go/no-

go, Simon, Stroop, SART, etc.). 

The general rationale for this approach nonetheless applies well to conflict tasks (e.g., 

Simon) or other, similar tasks: The general rationale is that response speed can be quantified well 

when trials do not require inhibition, response inhibition accuracy can be best indexed in trial 

accuracy when trials require inhibition of an incorrect response, and taking the ratio of these 

variables can provide an index of inhibitory control accuracy or general response speed that 

adjusts for the other (e.g., Tompson et al., 2020).  

For ease of understanding the remainder of this section, we refer to the measure we used 

as the “cross-domain inhibition efficiency” score (CDIE).  

Because no study to date has compared the properties of this—or, to our knowledge, 

any—integrated speed-accuracy measure (i.e., the CDIE) within the context of a conflict task 

(i.e., one with incongruent and congruent trials), we conducted a simulation study to this end. We 

simulated trials and participants using the Diffusion Model for Conflict tasks (DMC; Ulrich et 



al., 2015), which is a domain-general model developed to fit all tasks containing trials requiring 

inhibition and trials not requiring inhibition (e.g., congruent and incongruent trials). This model 

characterizes empirical performance data well across a variety of tasks and produces patterns of 

results that are characteristic of inhibition tasks (e.g., negative-going delta functions) that 

standard diffusion models cannot (Ulrich et al., 2015).  

We randomly sampled parameters from feasible ranges for each parameter. Each 

parameter’s feasible range was determined by reported parameter values fit to empirical data by 

Ulrich et al. (2015) and Shields et al. (2019; 2020). In particular, for decision boundary, we 

sampled values between 40 and 80 in a uniform distribution. For the interference gamma 

function, we set the scale parameter at 2 as recommended (White et al., 2018), we randomly 

drew amplitude from a uniform distribution from 10 to 30, and we randomly drew peak onset 

latency from a uniform distribution from 60 to 150. Finally, we randomly drew goal-directed 

drift rate from a uniform distribution from .15 to .7. Mean nondecision time was set to 300 and 

the standard deviation of nondecision time was set to 30. We simulated 300 trials per participant 

(150 congruent, 150 incongruent). We simulated 10,000 participants with feasible parameters 

(3,000,000 simulated trials).  

Decision boundary is the parameter that quantifies the speed-accuracy tradeoff in this 

model (Ulrich et al., 2015). We quantified inhibitory control as the mean difference between the 

two drift functions (i.e., goal-directed and interference; more formally, mean of μC – μA across t) 

from the 0th to the 60th percentile of the cumulative distribution of the interference gamma 

function. We conducted sensitivity analyses using different t windows for quantifying inhibitory 

control via this difference; none of our conclusions below differed across these sensitivity 

analyses. 



After simulating these data, we compared the balanced integrated scores (BIS), inverse 

efficiency scores (IES), and CDIE in relation to decision boundary and inhibitory control. 

Because our simulated task had both incongruent and congruent trial types, BIS was computed at 

the simulated participant level (using participant-level RT means and proportions correct) using 

the formulas given by Liesefeld and Janczyk (2023): 

𝐵𝐼𝑆 𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 =  
𝑃𝐶𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 −  𝑃𝐶

𝑆𝑃𝐶
−  

𝑅𝑇𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 −  𝑅𝑇

𝑆𝑅𝑇
 

𝐵𝐼𝑆 𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 =  
𝑃𝐶𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 −  𝑃𝐶

𝑆𝑃𝐶
−  

𝑅𝑇𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 −  𝑅𝑇

𝑆𝑅𝑇
 

𝐵𝐼𝑆 𝑖,   𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛  =  𝐵𝐼𝑆 𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 − 𝐵𝐼𝑆 𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

Where 𝑃𝐶𝑖,𝑗 = proportion correct for participant i in trial condition j, 𝑃𝐶 = grand mean 

proportion correct across all participants and conditions, 𝑆𝑃𝐶 = standard deviation of proportion 

correct across all participants and trial conditions,   𝑅𝑇𝑖,𝑗 = mean response time for participant i 

in trial condition j, 𝑅𝑇 = grand mean RT across all participants and conditions, and , 𝑆𝑅𝑇 = 

standard deviation of mean response time for all participants and trial conditions.  

Although BIS typically includes all trial conditions, we also calculated BIS in a second 

way, where BIScongruent or BISincongruent were only z-scored via the current condition (i.e., not 

across both conditions, as is typical, but only using congruent scores for BIScongruent, and only 

using incongruent scores for BISincongruent). We refer to the standard calculation of BIS in our 

BISinhibition score as BISinhibition_1 and the variant BIS that only includes the one trial condition in 

calculation of each component within the BISinhibition score as BISinhibition_2. 

We computed IES as  



𝐼𝐸𝑆 𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 =  
𝑅𝑇𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

𝑃𝐶𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡
 

𝐼𝐸𝑆 𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 =  
𝑅𝑇𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

𝑃𝐶𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡
 

𝐼𝐸𝑆 𝑖,   𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛  =  𝐼𝐸𝑆 𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 − 𝐼𝐸𝑆 𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

Finally, we computed the cross-domain inhibition efficiency (CDIE) score, as stated 

above, as  

𝐶𝐷𝐼𝐸 𝑖 =  
𝑃𝐶𝑖,   𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

𝑅𝑇𝑖,   𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 

Due to 10,000 simulated participants, all of the following analyses were significant, and 

we therefore focus on the magnitudes of associations to compare amongst them. We consider an 

effect size to be meaningful when the correlation is at least small in magnitude (i.e., |r| > .10). 

For BIS, we found that although these scores performed well in individual trial types (i.e., 

within congruent trials or incongruent trials), this was not the case when calculating an inhibitory 

control BIS with either method (i.e., using both j types congruent and incongruent when 

computing each type’s BIS and then taking the difference of the two j types, referred to as 

BISinhibition_1; or, using only the respective congruent or incongruent trial type when computing 

each type’s BIS and then taking the difference of the two j types, referred to as BISinhibition_2). In 

particular, both BISinhibition_1 and BISinhibition_2 were moderately strongly associated with decision 

boundary, r = .352, and, r = .329, respectively. Additionally, although BISinhibition_1 was 

associated with control, r = .665, BISinhibition_2 was not meaningfully associated with inhibitory 

control, r = .092.  

Similarly, for IES, we found that although these scores performed well in individual trial 

types (i.e., within congruent trials or incongruent trials), this was not the case within an 



inhibition IES. In particular, the inhibition IES (IESincongruent – IEScongruent) showed a moderately 

strong association with decision boundary, r = -.285. The inhibition IES showed a strong 

association with inhibitory control, r = -.702. 

Most importantly, CDIE was not meaningfully associated with decision boundary, r = -

.061, and, notably, CDIE was strongly correlated with inhibitory control, r = .944.  

These results are shown in the figures below, with BISinhibition_2 as “BIS Variant.” 

 

 

Because correct no-go trials do not have a response speed (and, faster responses on no-go 

trials index worse performance, not better), the inhibition forms of either the BIS and IES that 

are conceptually appropriate for conflict tasks such as Stroop or Simon are not appropriate for 

the go/no-go or SART. Because of this, we believe—especially in light of these simulation 



results—that the CDIE represents the only metric of inhibitory control usable across no-go and 

conflict tasks. Moreover, the CDIE has been predictively validated as an index of inhibitory 

control in neuroimaging studies, concurrently validated in our empirical data (i.e., given its 

stronger concurrent associations that also cluster more similarly to what would be expected from 

prior work than the raw scores), and construct validated in this new simulation (i.e., CDIE is 

associated with control, not decision boundary, when the two are experimentally manipulated).  

We thus believe that the CDIE is appropriate for our use in the supplementary material as 

the second set of analyses examining whether outcome type might have explained our results, 

with its results converging with the alternative structural equation models suggesting that 

outcome types do not account for our results.  
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