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A B S T R A C T   

Simply withholding a response while viewing an appetizing food, over the course of many presentations (i.e., 
during food go/no-go training) can modify individuals’ food preferences—which could, in turn, promote 
healthier eating behaviors. However, the neural mechanisms underlying this food go/no-go training-induced 
change in food preferences are still relatively unclear. We addressed this issue in the present functional magnetic 
resonance imaging (fMRI) study. To this end, we administered a novel passive viewing task before and after food 
go/no-go training to 91 participants in the scanner. Participants’ food preferences were measured with a binary 
food choice task. At the behavioral level, we found the expected training effect on food preferences: Participants 
preferred go over no-go foods following training. At the neural level, we found that changes in food preferences 
were associated with training-related go vs. no-go differences in activity and functional connectivity, such as less 
activity in the anterior cingulate cortex and superior frontal gyrus but greater functional connectivity between 
the superior frontal gyrus and middle occipital gyrus. Critically, Dynamic causal modeling showed that this 
preference change effect was largely driven by top-down influence from the superior frontal gyrus to the middle 
occipital gyrus. Together, these findings suggest a neural mechanism of the food go/no-go training 
effect—namely, that the food-viewing-related interplay between prefrontal regions and visual regions might be 
related to the food preference change following food go/no-go training.   

1. Introduction 

The prevalence of overweight and obesity has risen dramatically in 
developed and developing nations worldwide (Ng et al., 2014). This fact 
has far-reaching and costly implications, as a higher body mass index 
(BMI) is a major risk factor for numerous physical and mental health 
issues, including cardiovascular diseases (e.g., Lavie et al., 2009), some 
cancers (e.g., Kyrgiou et al., 2017), and psychiatric disorders (e.g., 
depression; e.g., Luppino et al., 2010). Consequently, much recent work 
has aimed to design effective interventions for promoting healthy eating 
habits and weight loss (Forcano et al., 2018; Jones et al., 2018; Stice 
et al., 2017; Yang et al., 2019). This study adds to this growing body of 
literature by examining the neural mechanisms underpinning one such 

intervention. 
Implicit or explicit preferences for unhealthy foods, coupled with 

weak executive control, may place individuals at heightened risk for 
unhealthy eating behaviors and obesity (Shields et al., 2021; Stice and 
Burger, 2019; Yang et al., 2018, 2021). Because these biased preferences 
can increase risk, it is possible that, conversely, cognitive training 
focused on decreasing cognitive bias toward high-calorie foods and 
enhancing executive control related to these foods could reduce over
eating—which often arises from exposure to obesogenic food environ
ments (Stice et al., 2016; Yang et al., 2019). Nonreinforcement training 
is one example of cognitive training that has demonstrated notable ef
fects in reducing food liking/wanting or unhealthy food consumption 
(Schonberg and Katz, 2020; Terenzi et al., 2022; Veling et al., 2022; 
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Zahedi et al., 2023). In particular, this form of cognitive training ne
cessitates participants to either respond or withhold their response to 
specific stimuli without the presence of external reinforcements. The 
most common paradigms employed in this area are food go/no-go 
training (e.g., Chen et al., 2019; Veling et al., 2021) and cue-approach 
training (e.g., Schonberg et al., 2014). In food go/no-go training, par
ticipants are instructed to respond quickly to select foods upon sighting a 
go cue (e.g., a green rectangular frame around the food) and restrain 
their response to other food items when facing a no-go cue (e.g., a grey 
rectangular frame around the food). Typically, the go/no-go ratio in this 
training has been 1:1. Conversely, cue-approach training often features 
an uneven distribution of go and no-go trials (i.e., only 30% go trials), 
and only the cue to respond is present on go trials (e.g., Itzkovitch et al., 
2022). Exactly why these disparate paradigms can facilitate healthy 
eating decisions, however, is still somewhat unknown. 

To understand the mechanisms underpinning some of the above ef
fects, Schonberg and colleagues conducted series of behavioral and 
neuroimaging studies investigating the effects of cue-approach training 
on relevant outcomes (Aridan et al., 2019; Bakkour et al., 2017; Botvi
nik-Nezer et al., 2020; Salomon et al., 2018, 2019; Schonberg et al., 
2014). In this, they discovered that after the cue-approach training, go 
items were selected more frequently than no-go items in binary choices. 
More importantly, their neuroimaging studies suggested that the neural 
mechanisms underpinning cue-approach training benefits involve both 
reward and perceptual/attention-related systems—referred to as the 
dorsal value pathway, or DVP (Schonberg and Katz, 2020). 

Similar to work on cue-approach training, many studies have 
investigated the behavioral effects of food go/no-go training (e.g., 
Lawrence et al., 2022; Moore et al., 2023; van Alebeek et al., 2023). For 
example, a recent meta-analysis of 36 independent samples, 77 effect 
sizes, and 3032 participants found that food go/no-go training can lead 
to statistically significant reductions in the evaluation of no-go foods 
(Yang et al., 2022). In a series of preregistered experiments, Chen and 
colleagues demonstrated that after food go/no-go training, participants 
more frequently selected go foods (compared to no-go foods) for con
sumption in a binary choice task (Chen et al., 2019, 2021; Chen and 
Veling, 2022). This preference change effect was replicated by a recent 
study using similar experimental materials (Wu et al., 2023). 

Nonetheless, unlike cue-approach training, the mechanisms under
lying food go/no-go training remain relatively unclear. The recently 
formulated “value updating” theory posits that food go/no-go training 
updates valuations of items through repeated decisions to act toward go 
foods and do nothing in response to no-go foods, resulting in the 
devaluation of no-go items and increased valuation of go items (Veling 
et al., 2022). Consequently, individuals slowly come to prefer go over 
no-go foods via changes in valuations of them both. In a related but 
distinct vein, the stimulus-response account proposes that repeated in
hibition of responses towards no-go items and while uninhibitedly 
responding to go items during training may lead to the formation of 
stimulus-response associations (e.g., go items become linked to action, 
and no-go items become linked to stopping) (Best et al., 2016; Johannes 
et al., 2021; Veling et al., 2017; Verbruggen et al., 2014; Verbruggen and 
Logan, 2008). Therefore, according to this theory, participants come to 
choose more go over no-go foods because taking action in response to go 
foods but inaction in the context of no-go foods becomes a “learned 
reflex.” These theories, while similar, make competing predictions about 
the mechanisms underpinning the food go/no-go training effect. How
ever, both theories are consistent with most evidence to date. 

Neuroimaging could help to clarify the mechanisms underpinning 
the effect of food go/no-go training, given the well-mapped reward and 
cognitive control-related neural circuits and systems. However, unlike 
cue-approach training, few neuroimaging studies—particularly func
tional magnetic resonance imaging (fMRI) studies—have examined the 
neural correlates of food go/no-go training effects. In one such study 
conducted by Yang et al. (2023), as expected, food go/no-go training led 
to significant reductions in behavioral no-go food evaluation after food 

go/no-go training. More importantly, at the neural level, Yang et al. 
(2023) observed decreased reward- (e.g., mid-insula) and 
cognitive-control-related (e.g., middle frontal gyrus) neural responses to 
these foods in a passive viewing task. In another recent fMRI study, 
Nakamura et al. (2023) also found that food go/no-go training reduced 
the ratings of no-go foods, and further found greater reward-related 
neural activity in response to go foods in a food image task in region 
of interest (ROI) analysis. 

In contrast to these two fMRI studies focusing on the effects of food 
go/no-go training on food evaluation, only one study has used fMRI to 
examine the neural bases of food preference changes (e.g., preferring go 
but not no-go foods) induced by food go/no-go training (Wu et al., 
2023). This study found that, after training, preference changes were 
inversely associated with frontoparietal and salience network activity 
when choosing go (vs. no-go) foods in the binary choice task. Addi
tionally, task-related functional connectivities from the inferior parietal 
lobule to the pre-supplementary motor cortex (Pre-SMA), dorsolateral 
prefrontal cortex (DLPFC), and dorsal anterior cingulate cortex (dACC) 
were positively related to these preference changes. The authors spec
ulated that their results supported the associative account, given that 
choosing more go (vs. no-go) foods was consistent with the established 
association (e.g., go foods = response, no-go foods = stop). Furthermore, 
participants who chose more go foods showed less activation in conflict 
monitoring (e.g., dACC) or resolution-related brain regions (e.g., 
DLPFC). However, it should be noted that only linking fMRI data during 
choices in the binary choice task with preference changes might not be 
sufficient to reveal the underlying neural mechanisms of preference 
changes induced by nonreinforcement training, such as food go/no-go 
training or cue approach training (Botvinik-Nezer et al., 2020). 

1.1. Current research 

The present study aimed to investigate the neural bases underlying 
preference changes induced by food go/no-go training using a novel 
passive viewing task. During this task, participants were asked to view 
pictures of snack food items individually, without making any response. 
This task was performed and scanned before and after food go/no-go 
training. By analyzing fMRI activity during the passive viewing task, 
we aimed to test whether neural activity and task-related functional or 
effective connectivity to go versus no-go foods after training compared 
with baseline could be predictors of food preference changes. We 
calculated task-related functional connectivity via generalized psycho
physiological interactions (gPPI) (McLaren et al., 2012). Given that gPPI 
is a correlational method, we used dynamic causal modeling (DCM) for 
effective connectivity analysis to further evaluate the directional infor
mation flow of the observed significant functional connectivity in gPPI 
analysis (Friston et al., 2003; Zeidman et al., 2019a). Based on previous 
findings (Wu et al., 2023; Yang et al., 2023) and the aforementioned 
accounts (e.g., value-updating account; the DVP pathway), we hypoth
esized that reward, conflict perception/resolution, and visual 
attention-related processes are involved in the food preference changes 
following food go/no-go training. 

2. Methods 

2.1. Participants 

Only female undergraduate or graduate students were recruited for 
the study because of the gender differences in eating behavior (Rolls 
et al., 1991) or metabolism (Blaak, 2001). Participants who reported 
current mental disorders, eating disorders, and/or head injuries were 
excluded. A power analysis (e.g., correlation: bivariate normal model) 
was performed utilizing G*Power (Version 3.1) (Faul et al., 2007), with 
α = 0.05, 1 – β = 0.95, to determine the sample size required to detect an 
expected effect size of r = 0.4. This estimate was based on the observed 
association between behavior changes induced by food go/no-go 
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training and the corresponding neural activation, as reported in recent 
studies (Wu et al., 2023; Yang et al., 2023). The power analysis indicated 
that a total sample size N ≥ 75 was required. To mitigate the risk of 
insufficient statistical power resulting from excessive head movement or 
participant dropouts during MRI scanning, we strategically recruited a 
total of 91 participants. Of the 91 participants, one was excluded from 
imaging analysis due to motion (e.g., displacement of >3 mm in any 
plane and rotation of >3◦in any direction). 

2.2. Procedure 

Prior to their study session, participants were instructed to fast for 
the 3 h immediately preceding their arrival at the lab. Upon arriving at 
the lab, participants first provided informed consent and completed 
demographic questionnaires. Participants then completed short, prac
tice versions of the food go/no-go training and the food choice task, 
before completing the five formal experimental tasks, including the food 
evaluation task, passive viewing task (baseline), food go/no-go training, 
passive viewing task (post-training), and food choice task (see Fig. 1 for 
the sequence of main experimental tasks). Prior to task commencement, 
participants were asked to rate their hunger by moving a mouse cursor 
along an analog scale that ranged from − 100 (not at all) to 100 
(extremely hungry). Detailed outlines of the entire experimental pro
cedure and individual tasks were provided in Figs. 1 and 2. Ethical 
approval of all procedures was granted by Southwest University, 
H22063 (12/2021). The study was carried out in accordance with 
Declaration of Helsinki. 

2.3. Measurements 

2.3.1. fMRI data acquisition 
Structural and functional images were acquired on a 3 T Prisma 

Siemens Trio MRI scanner using a 64-channel brain coil at Southwest 
University (for the detailed scan parameters, see our prior studies; (Wu 
et al., 2023; Yang et al., 2023). 

2.3.2. Pre-training food evaluation 
During the evaluation task, 40 color images of candies were pre

sented on the screen one after the other in random order. The pictures 
were taken from a previously published study (Chen et al., 2019). For 
each candy picture, participants were asked to indicate how much they 
wanted to eat this candy at that moment by using a 200-point scale from 
0 (not at all) to 2 (very much) (Chen et al., 2019). The food image 
remained on the screen until participants pressed a key (‘continue’) to 
confirm their rating, after which the task moved on to the next question. 

2.3.3. Item selection 
For each participant, images of candies were rank-ordered from 1 

(highest value) to 40 (lowest value) based on their evaluation. Then, 12 
pictures (ranked 3–14) were used in the food choice task (Wu et al., 
2023). To pair go and no-go pictures with similar initial evaluation, the 
12 pictures were divided into 2 subgroups with identical mean rank. Six 
of the 12 pictures (i.e., pictures 3, 6, 7, 10, 11, 14) were chosen to be 
paired with the go cue during training (go items), and the other 6 (i.e., 
pictures 4, 5, 8, 9, 12, 13) were paired with the no-go cue during training 
(no-go items). These items were also used during go/no-go training and 
passive viewing tasks. Ensuring that the palatability of foods was 
matched guaranteed that any observed changes in food preference can 

be attributed to the training itself, rather than to inherent differences in 
food value prior to training. 

2.3.4. Passive viewing task: baseline 
During this task, the 12 go and no-go images were presented to 

participants using an event-related design in a random order to assess 
neural response to these food images before and after go/no-go training. 
Participants were asked to simply view the food images on the screen 
without taking any action. The task consisted of 2 runs. In each run, each 
of the 12 images was presented on the screen for a fixed duration of 2 s, 
followed by a 1–4 s interstimulus interval. Each image was presented 
one time. 

2.3.5. Go/no-go training 
The training task parameters are similar to those used in previously 

published studies (Chen et al., 2019; Wu et al., 2023; Yang et al., 2023). 
The evaluated 12 food images were used in the training. During the task, 
food images were randomly presented individually on the center of a 
computer screen for up to 1 s, followed by a 1–4 s interstimulus interval. 
A green or grey rectangular frame appeared around the picture 100 ms 
after the picture onset, and it was visible for the remainder of the time 
that the picture was displayed. Participants were instructed to press a 
button on an MRI-compatible response box as quickly and accurately as 
possible if the rectangular frame surrounding the picture was green. 
However, if the rectangular frame surrounding the picture was grey, 
they were instructed not to respond. The training session consisted of 12 
runs with 12 trials per run (i.e., 6 go trials and 6 no-go trials per block; a 
total of 144 trials across all blocks), and it took approximately 12 min to 
complete. Participants were allowed a break after finishing half of the 
training. 

2.3.6. Passive viewing task: post-training 
After the training, participants again viewed the images that were 

included in the training task, using the same procedure as in the pre- 
training passive viewing task. 

2.3.7. Food choice task 
The food choice task is similar to those used in previously published 

studies (Chen et al., 2019; Wu et al., 2023). The evaluated 12 food im
ages were used in the task. In each trial, one go food and one no-go food 
were presented side by side, and participants had to choose one food 
they wanted to eat within 1.5 s by pressing the corresponding button on 
an MRI-compatible response box. After each choice, the chosen item was 
surrounded by a black rectangle for 500 ms as confirmatory feedback. 
The task consisted of 2 runs, each with 36 trials, and trials were sepa
rated by a fixation cross that lasted on average 2.5 s (range, 1–4 s). The 
entire task took approximately 7 min to complete. Participants were 
allowed a break after finishing half of the trials. 

2.4. Statistical analyses 

2.4.1. Behavioral data analysis 
Food choices were analyzed with a multilevel logistic regression at 

the participant level (formula: choice ~ 1 + (1 | subject)), using the 
glmer function from the lme4 package in R version 4.2.1 (Bates et al., 
2015; R Core TeamR., 2013). Food choice was dummy coded (choosing 
go food = 1, choosing no-go food = 0). 

Fig. 1. The entire experimental procedure.  
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2.5. Whole-brain analyses 

fMRI data preprocessing was performed using DPBAI toolbox (Yan 
et al., 2016) in MATLAB (version R2021a, MathWorks). Preprocessing 
consisted of slice timing and head motion corrections, coregistration, 
segmentation, normalization to Montreal Neurological Institute space in 
3 × 3 × 3 mm3 voxel sizes, and spatial smoothing with a Gaussian kernel 
of 8 mm at full width half-maximum (for greater detail, see Wu et al., 
2023; Yang et al., 2023). 

First-level and second-level analyses were conducted in SPM12. In 
the first-level analysis (i.e., at the subject level), the four conditions (pre- 
training go foods, pre-training no-go foods, post-training go foods, and 
post-training no-go foods) and six motion regressors were modeled using 
the general linear model, with delta functions convolved with a ca
nonical hemodynamic response function. The critical contrast of interest 
was within-subject activations during go foods vs no-go foods (post- 
training vs pre-training). The resulting contrast images were used in 
second-level analyses, where multiple linear regression was conducted 
to identify brain activations correlated with changes in food preferences 
(i.e., the probability of choosing go foods). Significant clusters were 
identified using a cluster-forming threshold of P < 0.001 (uncorrected) 
and a cluster-level family-wise error (FWE) rate-corrected threshold P <
0.05. 

2.5.1. Generalized psychophysiological interaction analysis (gPPI) 
The gPPI analysis was conducted using CONN toolbox (version 22) 

(Whitfield-Gabrieli and Nieto-Castanon, 2012), which computed 
seed-to-voxel functional connectivity while participants viewed food 
images [contrast: (go - no-go) - (post-training - pre-training)], and 
further allowed us to examine the association of this event-related 
functional connectivity with preference changes. This analysis was 
divided into four sequential steps including setup, denoising, first-level, 
and second-level analyses. By default, the 
blood-oxygen-level-dependent (BOLD) signal from the white matter and 
the segmented cerebrospinal fluid (CSF), estimates of motion parame
ters, and the main task effects (pre-training go, pre-training no-go, 
post-training go, post-training no-go) were treated as confound re
gressors in our functional connectivity analysis. We applied a band-pass 
filter (0.008, inf) to limit the effect of low-frequency drift. Significant 
clusters from the whole-brain analysis (Section 2.4.2) were used as seed 
regions, and connectivity measure was calculated as bivariate correla
tions. All reported results were thresholded at an uncorrected 
voxel-level P < 0.001 for cluster formation, with cluster-based FWE 
correction (P < 0.05). 

2.5.2. Dynamic causal modeling analysis (DCM) 
Given that gPPI analysis is a correlational method and cannot pro

vide evidence concerning the direction of functional interactions 

between brain regions, we further conducted DCM analysis in SPM 12 
for effective connectivity analysis to evaluate the directional informa
tion flow of the significant functional connectivity observed in gPPI 
analysis (Section 2.4.3). Three matrices in DCM were used to model the 
experiment: (1) matrix A, the intrinsic connections within and between 
brain regions; (2) matrix B, the strength of connection changes due to 
different experimental conditions (modulatory terms); (3) matrix C, the 
driving input to the system (Friston et al., 2003). Since our design did 
not include any modulatory input, we did not model modulatory terms 
(matrix B). Therefore, in this study, we focused on the effect of viewing 
food images after food go/no-go training (driving input) on intrinsic 
connections (matrix A). 

The Parametric Empirical Bayes (PEB) method was used to estimate 
effective connectivity parameters at the group level (Zeidman et al., 
2019b). In our study, we were interested in whether effective connec
tivity was related to the food preference changes induced by training at 
the group level. To down-weigh participants with noisy data and un
certain parameters, PEB used the full posterior density over the pa
rameters (i.e., expected values and covariance) from subject-level 
(first-level) DCM analysis to inform the group-level (second-level) DCM 
results. After estimating the PEB model, we then used Bayesian model 
reduction (BMR)—a “greedy search” approach—to prune parameters 
that did not contribute positively to the model evidence. Posterior 
parameter estimates following BMR were averaged using Bayesian 
model averaging (BMA), and we thresholded averaged model parame
ters at >95% posterior probability. (PP) (i.e., “Strong” evidence of the 
parameters being present, rather than absent). 

3. Results 

3.1. Demographic information and hunger level 

Participants were, on average, 20.62 years old [standard deviation 
(SD) = 1.55; range = 18–26 years]. The mean body mass index (BMI) 
was 20.79 (SD, 2.81; range, 16.77–31.14; six participants met criteria 
for overweight). The mean hunger was 48.70 (SD, 42.85; range, 
− 63.75–99.75). 

3.2. Behavioral results 

3.2.1. Performance during go/no-go training 
The training was relatively easy to complete; as such, performance 

was near-ceiling: the average commission error rate was 0.007 (SD =
0.01); the average omission error rate was 0.010 (SD = 0.03). The 
average go response time was 382.32 ms (SD = 44.44 ms). 

3.2.2. Food evaluation before training 
A paired t-test was conducted to check whether the ratings of go and 

Fig. 2. Sequence of the main experimental tasks. (1) Evaluation task; (2) In the passive viewing task, food items were individually presented on the screen; (3) The 
food go/no-go training; (4) Passive viewing task; (5) Food choice task. (Color figure). 
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no-go foods were matched before the food go/no-go training. In this, 
there was no significant difference between the average ratings of go 
foods (M = 1.31, SD = 0.44) and no-go foods (M = 1.31, SD = 0.44) 
before training, t (90) = 0.53, p = 0.597. 

3.2.3. Probe in food choice task 
Although the evaluations of go and no-go foods were matched before 

training, multilevel logistic regression showed that participants signifi
cantly preferred go over no-go foods after the food go/no-go training, 
with a mean proportion of choosing go foods of 57.83%, OR = 1.47, 95% 
CI [1.21,1.77], p < 0.001 (Fig. 3). 

3.2.4. Correlation between food go/no-go training performance and 
preference changes 

A notable negative correlation emerged between the proportion of 
choosing go foods and go response time (r = − 0.21, p = .04). However, 
there was no significant correlation found in relation to either the 
commission error rate (r = 0.19, p = .08) or the omission error rate (r =
− 0.05, p = .63). 

3.3. Brain activations are related to preference changes 

To identify brain regions associated with preference changes 
following food go/no-go training, we examined the association between 
the probability of choosing go foods and neural activity while passively 
viewing go (vs. no-go) foods in the after training compared to before. In 
this, we found that the preference change effect (e.g., the proportion of 
choosing go foods) was negatively correlated with BOLD activity in 
response to go vs. no-go foods (post vs. pre-training) in the ACC, superior 
frontal gyrus (SFG), middle frontal gyrus (MFG), middle temporal gyrus 
(MTG), and angular gyrus (AG) (Table 1, Fig. 4). 

3.4. Functional connectivity between SFG and MOG is related to 
preference changes 

Next, to understand how the brain regions with activity related to the 
passive viewing task interacted with other brain regions, we conducted a 
gPPI analysis with the ACC (MNI coordinates: 3, 45, 0), SFG (MNI co
ordinates: 6, 54, 3; 3, 48, 21), MFG (MNI coordinates: 27, 33, 39), MTG 

(MNI coordinates: 60, − 6, − 24; MNI coordinates: 48, 9, − 39), and AG 
(MNI coordinates: 39, − 63, 33) as seed ROIs (6 mm sphere centered on 
the peak cluster) (Table 1). In this, we examined whether whole-brain 
functional connectivity of seed ROIs during passive viewing of go (vs. 
no-go) foods after training compared with before training was related to 
the probability of choosing go foods. Bonferroni tests were used to 
correct for the number of tests (p < .05/7 seeds = 0.007). The results 
showed a significant SFG seed-to-voxel middle occipital gyrus (MOG) 
cluster connectivity that was significantly correlated with preference 
changes (Fig. 5a, Table 2). 

We then extracted activity from the MOG cluster, defined by a 6 mm- 
radius sphere centered at the MOG cluster’s peak, and conducted a 
correlation analysis between the MOG connectivity changes and pref
erence changes induced by food go/no-go training. Results showed that 
the functional connectivity change of SFG with MOG while viewing go 
vs. no-go foods (post-training vs. pre-training) positively correlated with 
the probability of choosing go foods (r = 0.44, p < 0.001) (Fig. 5b). 

3.5. Effective connectivity between SFG and MOG is related to preference 
changes 

We then used DCM models (Figs. 6a and 7a) and PEB to examine 
whether the effective connectivity (defined as the extent to which a 
brain region’s neural activity directly influences another region) be
tween SFG and MOG was related to the probability of choosing go foods. 
We focused on connection parameters with a PP greater than 0.95, which 
corresponds to strong evidence. 

We found that the effective connectivity from SFG to MOG (estimate 
= 0.77, PP = 1), MOG to SFG (estimate = 0.57, PP = 1), and SFG to SFG 
(estimate = 0.80, PP = 1) were related to the probability of choosing go 
foods when using post-training go foods as model inputs (Fig. 6b). The 
positive sign of these effective connectivity estimates suggests that 
larger bidirectional connectivity between MOG and SFG (SFG to MOG, r 
= 0.59, p < 0.001; MOG to SFG, r = 0.73, p < 0.001) or greater self- 
inhibition of SFG (r = 0.76, p < 0.001) when viewing go foods was 
associated with choosing more go foods for consumption after go/no-go 
training. This association was clearer when plotting the individual 
connectivity estimates against the probability of choosing go foods 
(Fig. 6c and d). In contrast, when using post-training no-go foods as 
model inputs, the effective connectivity from SFG to MOG was nega
tively related to the probability of choosing go foods (estimate = -0.42, 
PP = 0.99) (Fig. 7b), suggesting that weaker connectivity strength or 
greater inhibitory influence from SFG to MOG (r = − 0.29, p = 0.006) 
when viewing no-go foods was associated with choosing more go foods 
(or choosing against no-go foods) for consumption after go/no-go 
training. This association was clearer when plotting the individual 
connectivity estimates against the probability of choosing go foods 
(Fig. 7c). 

3.6. Sensitivity analysis 

Considering that BMI and hunger levels may potentially influence 
the brain’s responses to food stimuli, we conducted a sensitivity analysis 
to account for these variables. Importantly, after adjusting for both BMI 
and hunger, none of our primary results were altered. Please refer to the 
supplementary material for a detailed description of these results. 

4. Discussion 

In this study, we examined the neural mechanisms underlying pref
erence changes following food go/no-go training. Unlike our previous 
study, which analyzed fMRI data from a binary choice task (Wu et al., 
2023), we introduced a novel passive viewing task to examine whether 
the neural changes in response to go (vs. no-go) foods before and after 
food go/no-go training were related to training-induced preference 
changes in a relatively large sample (N = 91). We predicted that the 

Fig. 3. Probability of choosing go foods during the probe task. The mean 
proportion of trials in which participants chose go over no-go foods is shown. 
The dashed line indicates an equal preference level of 50%; error bars represent 
the standard error of the mean. Asterisks indicate the statistical significance in a 
repeated-measures logistic regression. ***p < 0.001. 
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underlying neural mechanisms would involve value, conflict percep
tion/resolution, and visual attention-related brain regions. We found a 
significant negative association between individual differences in pref
erence changes during the binary choice task and activity in the ACC, 
SFG, MFG, MTG, and AG while passively viewing food images. In 
addition, we provided evidence for enhanced SFG functional connec
tivity with MOG associated with the probability of choosing go foods. 
Furthermore, DCM and PEB analysis showed that this food preference 
change effect was primarily modulated by top-down influence from the 
SFG to the MOG. 

The behavioral choice results of our study align with the results of 
previous work on food go/no-go training (Chen et al., 2019, 2021; 
Veling et al., 2021; Wu et al., 2023) and cue-approach training (Bakkour 
et al., 2017; Botvinik-Nezer et al., 2020; Itzkovitch et al., 2022; Salomon 
et al., 2019; Schonberg et al., 2014). Although the evaluations of go 
foods and no-go foods were matched before training, participants chose 
more go than no-go foods following training. Taken together, our results 
add to the body of work that suggests that the preference modification 
effect of nonreinforcement training, via either food go/no-go training or 
cue-approach training, is robust and reproducible. This stable training 
effect may be relevant to clinical interventions: Nonreinforcement 
training is simple, relying only on simple action or inaction. Future 
studies are needed to test whether food go/no-go training or 
cue-approach training can promote healthy food choices in individuals 
with obesity or eating disorders. 

To further explore the neural correlates of preference changes 
induced by food go/no-go training, we employed fMRI. Participants who 
chose more go foods over no-go foods demonstrated changes in re
sponses while passively viewing go foods vs. no-go foods (post vs. pre- 
training) in the ACC, SFG, MFG, MTG, and AG (i.e., activities were 
negatively correlated with the probability of choosing go foods). The 
ACC is related to conflict monitoring and error detection (Ham et al., 
2013), and the MFG/DLPFC and SFG play a crucial role in executive 
control (Li et al., 2013; Menon & D’Esposito, 2022). In addition, AG and 
MTG are respectively involved in attention (Seghier, 2012) and visual 
perception/memory (Murray et al., 2007). 

The pattern of results in the current study shows some consistency 
with the studies related to cue-approach training, which is another well- 
studied nonreinforcement training task. Similar to our results, Botvi
nik-Nezer et al. (2020) also found that reduced activity in the attention 
brain areas (e.g., superior parietal lobule, SPL) was associated with 
(long-term) food preference changes induced by cue-approach training. 
In addition, the brain activation pattern in the current study is also 
consistent with our previous study, which linked neuroimaging data 
from the binary choice task with the preference change effect following 
food go/no-go training (Wu et al., 2023). Specifically, Wu et al. (2023) 
found that decreased (rather than increased) activity in the executive 
control (e.g., DLPFC), conflict monitoring (e.g., dACC) and attention/
visual (e.g., SPL)-related brain regions during the choice of go foods (vs. 

no-go foods) was related to choosing more go over no-go foods. How
ever, different from cue-approach training-related work (Salomon et al., 
2019; Schonberg et al., 2014), we did not find neural activities in brain 
regions associated with encoding value (e.g., ventromedial prefrontal 
cortex, vmPFC) were related to the probability of choosing go foods. 
This inconsistency can be explained from at least two perspectives. 
Firstly, there exist differences in the task design between the 
cue-approach training and the go/no-go training. The ratio of 
go-to-no-go trials in cue-approach training is typically presented as 3:7, 
whereas in go/no-go training, the ratio tends to be 1:1. Additionally, 
both types of trials in go/no-go training are accompanied by cues; this 
contrasts with cue-approach training, where no-go trials are not 
prompted by cues. Secondly, the cue-approach training research, led by 
Schonberg and colleagues (Botvinik-Nezer et al., 2020; Itzkovitch et al., 
2022; Salomon et al., 2019; Schonberg et al., 2014), has a broader scope 
- it focuses not only on the immediate effects of training but also on the 
long-term effects, and these effects have been explored using both 
high-value and low-value food items. In contrast, our study is narrower 
in scope, focusing solely on the immediate impact of go/no-go training 
on high-value food items. 

As mentioned within the introduction, the value updating account 
and the stimulus-response account have been proposed to explain the 
effect of food go/no-go training on food evaluation or choices. It seems 
that the associations of the executive control and conflict monitoring- 
related brain regions with the preference modification effect we 
observed in the current work could be explained by the stimulus- 
response account. Specifically, this account suggests that participants 
might form an “automatic reflex” (e.g., go foods = respond, no-go foods 
= stop) following food go/no-go training, leading to the consistent 
choice of go foods and rejection of no-go foods. Consequently, partici
pants who perceived less conflict or uncertainty when viewing go over 
no-go foods after training might further develop stronger stimulus- 
response associations and choose more go over no-go foods. At the 
neural level, this reduced conflict or uncertainty was reflected by 
decreased activations in the conflict perception (e.g., ACC) and resolu
tion (e.g., SFG) regions for them. In addition, our findings that partici
pants may learn a specific automatic response to food cues after go/no- 
go training align with a recently developed computational model of 
motor response patterns during cue-approach training. By using 
Bayesian modeling to analyze meta-data from 864 participants across 29 
different cue-approach training experiments, Salomon et al. (2024) 
showed that the attention and motor learning components of the 
training were correlated with preference changes elicited by the 
training. 

The value updating account proposes that the value of go items (e.g., 
foods) increases and the value of no-go items decreases after go/no-go 
training, influencing individuals’ choices. Supporting this account, 
Johannes et al. (2021) found that go/no-go training influences evalua
tions of smartphone apps, and that these evaluations mediate the effect 

Table 1 
Go > No-Go activity (Post training > Pre training) correlated with the probability of choosing go foods.  

Cluster index Correlation direction Region Cluster 
Size 

X Y Z Peak 
Z-value  

Positive None None     
1 Negative Anterior cingulate cortex 279 3 45 0 4.39   

Superior frontal gyrus  − 6 54 3      
12 45 − 6  

2 Negative Superior frontal gyrus 49 3 48 21 4.37     
− 3 57 30  

3 Negative Middle temporal gyrus 80 − 60 − 6 − 24 4.22     
− 57 − 21 − 15  

4 Negative Middle frontal gyrus 39 − 27 33 39 4.13 
5 Negative Middle temporal gyrus 50 48 9 − 39 3.95     

48 18 − 30  
6 Negative Angular gyrus 38 − 39 − 63 33 3.91 

Notes: Peaks within the regions were considered significant at p < 0.001 and corrected for multiple comparisons at the cluster level, p < 0.05. 
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of the training on behavioral choices. However, we did not find a sig
nificant link between any value-related brain regions (e.g., vmPFC) and 
the preference change effect. We argue that this was mainly caused by 
the passive viewing task used in the current study. This task might not be 
ideal for testing the value updating account, as it does not measure the 
evaluation process. Therefore, future work should directly use an eval
uation task in the fMRI scanner to test the value updating account. 

An intriguing brain signature found in the current study is the 
functional connectivity between the SFG and MOG and its modulation 
by preference changes. This connectivity remained significant even 
survived after Bonferroni correction. As the strength of this connectivity 
increased, participants chose more go foods. The MOG plays an 

important role in visual processing (Tong, 2003), and, as mentioned 
earlier, the SFG is involved in executive control. Therefore, the signifi
cant SFG-MOG connectivity might suggest that the functional integra
tion between executive control and visual processing is critical for the 
preference change effect following food go/no-go training. 

Importantly, we used DCM models and PEB to examine the infor
mation flow of the significant SFG-MOG connectivity. We found that the 
preference change effect of food go/no-go training was primarily 
modulated by top-down influence from the SFG to the MOG. Critically, 
our data revealed dissociated associations for the directed influences 
between the SFG and MOG on preference changes. Specifically, when 
using post-training go foods as DCM model inputs, both the bottom-up 

Fig. 4. Imaging results from the passive viewing task after, compared to before, food go/no-go training. The probability of choosing go foods negatively correlated 
with the BOLD response during passive viewing of go (vs. no-go) foods after, compared to before, training in several regions, including the anterior cingulate cortex, 
superior frontal gyrus, middle temporal gyrus, middle frontal gyrus, and angular gyrus. (Color figure). 
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connectivity from MOG to SFG and the top-down connectivity from SFG 
to MOG were positively related to preference changes. In contrast, when 
using post-training no-go foods as DCM model inputs, the top-down 
connectivity from SFG to MOG showed an inverse association with 

preference changes. The top-down MOG to SFG connectivity could be 
taken to suggest that when processing go foods, a stronger excitatory 
influence from the visual processing region to the executive control re
gion underpins choices for go foods, whereas the influence of the 

Fig. 5. Results from the seed-based ROI superior frontal gyrus (SFG) gPPI functional connectivity analysis. (a) SFG-middle occipital gyrus (MOG) connectivity during 
passive viewing of go (vs. no-go) foods after, compared to before, training significantly related to the probability of choosing go foods. (b) Specifically, the correlation 
between SFG-MOG connectivity and the probability of choosing go foods was positive. In other words, across participants, the larger the connectivity, the greater the 
probability of choosing go foods was observed. Scatter plot is for data visualization purposes only. (Color figure). 

Table 2 
Results of the functional seed-to-voxel connectivity analysis [Go > No-Go (Post-training > Pre-training)] correlated with the probability of choosing go foods.  

Seed Region Correlation direction Anatomical Region Cluster 
Size 

X Y Z Peak Z-value P FWE-correction 

1 Superior frontal gyrus Positive Middle occipital gyrus 181 − 36 − 84 12 4.28 ＜0.001 

Notes: Peaks within the regions were considered significant at p < 0.001 and corrected for multiple comparisons at cluster level, p < 0.05. In addition, Bonferroni tests 
were used to correct for the number of tests (p < .05/7 seeds = 0.007). FWE = family-wise error. 

Fig. 6. Association between the probability of choosing go foods and effective connectivity using post-training go foods as inputs. (a) The schematic network 
presentation of the DCM model. The solid lines represent connections surviving the 95% posterior probability (Pp) threshold based on free energy; (b) The posterior 
parameter estimates of connections surviving the 95% Pp. Error bars indicate standard error; (c) The association between the probability of choosing go foods and 
effective connectivity from the superior frontal gyrus (SFG) to the middle occipital gyrus (MOG); (d) The association between the probability of choosing go foods and 
effective connectivity from MOG to SFG. **: Pp＞95%. (Color figure). 
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executive control region on the visual processing region (top-down 
connectivity) depends on the visual input (go or no-go foods). In line 
with the stimulus-response account, when the visual input was go foods, 
the executive control region exerted more excitatory influence on the 
visual processing region, potentially prompting participants to choose 
more go foods (go foods = respond). Conversely, when the visual input 
was no-go foods, the executive control region exerted more inhibitory 
influence on the visual processing region, potentially prompting par
ticipants to reject no-go foods (no-go foods = stop) and, subsequently, 
choose more go foods. Our functional/effective connectivity results are 
thus consistent with the DVP model of nonreinforced preference change 
(Schonberg and Katz, 2020), which proposes that prefrontal regions 
interface with visual, attention regions to guide preference modification 
following nonreinforcement training (e.g., cue-approach training). 

4.1. Limitations 

Despite its strengths, such as a relatively large fMRI sample and using 
a novel passive viewing task, our study has some limitations. First, we 
recruited a sample of female undergraduate or graduate students, mostly 
with normal weight. More studies are needed to examine the general
izability of our results in other samples (e.g., individuals with obesity). 
Second, our study was not preregistered. Third, our investigation was 
restricted to the immediate effects of training on neural responses. 
Future studies should extend this line of inquiry to explore the neural 
correlates associated with long-term effects of such training, thereby 
unveiling whether these immediate changes translate into more sus
tained modifications in neural activity and behavior. Additionally, the 
absence of control tasks, such as a non-food related go/no-go task, in our 
experimental setup represents a limitation. Finally, we used high-calorie 
or high-value foods (e.g., candy) as training materials; future studies 
should investigate the potential neural mechanisms of training effects on 

low-calorie foods (e.g., healthy foods). 

5. Conclusion 

Nonreinforcement training, such as food go/no-go training, may 
reduce overeating and promote healthy eating behaviors. We examined 
the neural mechanisms underlying the effect of food go/no-go training 
in the present study. At the behavioral level, consistent with prior work, 
we found the food go/no-go training effect on preference changes, 
indicating that this effect appears to be robust. At the neural level, we 
found that less activity in the ACC, SFG, MFG, MTG, and AG, but greater 
functional connectivity between the SFG and MOG during viewing of go 
(vs. no-go) food is related to individuals’ preference changes from pre-to 
post-training. Critically, we found that this food preference change ef
fect was primarily modulated by the top-down influence from the SFG to 
the MOG. Together, these findings suggest that prefrontal regions might 
interface with visual regions to guide preference modification following 
nonreinforcement training. 
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