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A B S T R A C T   

Consistently not responding to appetitive foods during food go/no-go training could change individuals’ food 
choices and sometimes even body weight, however, fewer studies have explored the neural pathways underlying 
the effects of food go/no-go training. In this study, we scanned eighty-six female participants using functional 
magnetic resonance imaging and investigated the neural bases of preference changes in a binary food choice task 
following action (e.g., go) or inaction (e.g., no-go) toward distinct foods within a food go/no-go training para-
digm. In line with prior behavioral work, we found that participants’ food preferences changed as a function of 
food go/no-go training, with participants choosing more “go” over “no-go” foods for consumption following 
training. At a neural level, preference changes were inversely associated with frontoparietal and salience network 
activity when choosing go (vs. no-go) foods. Additionally, task-related functional connectivities from the inferior 
parietal lobule to the pre-supplementary motor cortex, dorsolateral prefrontal cortex, and dorsal anterior 
cingulate cortex were related to these preference changes. Together, current work supports that food go/no-go 
training reliably changes people’s preferences. More importantly, our findings suggest that a neural pathway 
centered on areas traditionally associated with selective attention may interface with prefrontal regions to guide 
preference changes induced by food go/no-go training, though future studies using other tasks (e.g., passive 
viewing tasks) are still needed to test this potential neural mechanism.   

1. Introduction 

Eating healthier was the most commonly reported desired lifestyle 
change by US consumers last year (Nextbite, 2022; Nutrisystem, 2022). 
Indeed, many individuals endeavor to resist the approach tendency to 
appetitive yet unhealthy foods—especially those that contain much 
sugar and fat (Hall, 2016; Yang et al., 2019). However, food preferences 
are notoriously difficult to change: About 80% of people who lose 
weight will have failed to maintain that weight loss one year later (Wing 
& Phelan, 2005). Although some lab interventions do appear to produce 
a somewhat lasting effect on food preferences (Aridan et al., 2019; 
Lawrence et al., 2022; Schonberg et al., 2014), the mechanisms under-
pinning those effects are largely unknown. Understanding these 

mechanisms may help to improve the efficacy of those interventions, 
which illustrates the importance of that lack of understanding. This 
study helps to address that gap. 

One commonly known method for acquiring or modifying food 
preferences is reinforcement learning, which involves reinforcing or 
punishing specific behaviors to increase or decrease their frequencies, 
respectively (Dayan & Niv, 2008). The principles of reinforcement 
learning have been applied in many psychosocial interventions that aim 
to facilitate behavioral changes, such as smoking cessation (e.g., Pro-
chaska et al., 2004) or weight loss (e.g., Petry et al., 2011). However, the 
beneficial effects of these interventions may fade quickly after the 
intervention has finished (e.g., Prochaska et al., 2004). 

Interestingly, some recent studies have found that simple action 
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toward (e.g., responding) or inaction (e.g., not responding) related to 
stimuli in the absence of external reinforcements may in fact contribute 
to behavioral and preference changes related to those stimuli (e.g.,Chen 
et al., 2019; Chen et al., 2021; Schonberg et al., 2014; Schonberg & Katz, 
2020; Veling et al., 2021; Zoltak et al., 2018). The most prominent 
paradigms in this work are cue-approach training (Schonberg et al., 
2014) and the food go/no-go training (e.g., Veling et al., 2013), both of 
which manipulate responding versus not responding to foods. In 
cue-approach training, participants view a series of items (e.g., foods) 
and are told to respond quickly (e.g., pressing a key on the keyboard) if 
they hear a tone, which is paired with around 25% of the items. 
Cue-approach training has been shown to reduce relative preferences for 
no-go snack foods (compared to go snack foods) in multiple studies 
(Botvinik-Nezer et al., 2020; Schonberg et al., 2014). It is thought that 
bottom-up perceptual mechanisms may underpin immediate changes in 
preferences, and decreases in top-down attention processes may be 
related to long-lasting preference changes induced by cue-approach 
training (Botvinik-Nezer et al., 2020; Schonberg & Katz, 2020). 

Another paradigm that has been found to modify food preferences is 
food go/no-go training (Chen et al., 2019). In contrast to cue-approach 
training, food go/no-go training usually contains an equal number of go 
and no-go trials (i.e., not the 70%/30% split used by cue-approach 
training), and the cue to respond or not is present on both types of tri-
als. As such, the influences of food go/no-go on food preferences are 
thought to be related to repeated decisions of action or inaction (Chen 
et al., 2019). Importantly, recent studies have found that food go/no-go 
training can produce desired but more distal real-world outcomes, such 
as weight loss, especially for individuals with a higher body weight 
(Forman et al., 2019; Lawrence et al., 2015; Stice et al., 2017; Veling 
et al., 2014; but see Adams et al., 2021; Carbine et al., 2021; Stice et al., 
2022; Yang et al., 2021). 

The mechanisms behind food go/no-go training are still a matter of 
debate. The prevailing theory is that food go/no-go training updates 
valuations of items via repeated decisions of action or inaction, such that 
no-go items are devalued and go items are more highly valued (Value- 
updating account) (Veling et al., 2022). This theoretical view thus posits 
that food go/no-go training does not modify food preferences by training 
inhibition of those items per se (Veling et al., 2022). However, this 
prevailing view of food go/no-go training effects has not yet been tested 
outside of a behavioral level, and it is difficult to disentangle improved 
inhibition (e.g., stronger top-down control of a bottom-up signal) from 
decreased valuation (e.g., a weaker bottom-up signal) at a behavioral 
level. 

Neuroimaging may help to clarify how food go/no-go training 
modifies food choices and preferences, given well-mapped top-down 
and bottom-up neural circuits and systems (Baluch & Itti, 2011; 
Schonberg & Katz, 2020). For example, during a food go/no-go, palat-
able stimuli elicit activity within regions involved in top-down control as 
well as regions involved in value-based decision-making, and activity 
levels in each of these regions during this task are related to body mass 
index (BMI) (Batterink et al., 2010). Similarly, food go/no-go training 
produces changes in reported food valuations, and these changes are 
linked to training-induced differences in insula activity (Yang et al., 
2021). As implied by the above, a small but growing body of work has 
examined neural changes related to (food) go/no-go training. To date, 
however, no study has examined whether the neural changes related to 
food go/no-go training or go/no-go food decision-making might relate 
to training-related preference changes. This study addresses this gap. 

1.1. Current research 

The current study aimed to determine the neural bases underlying 
changes in food preferences after food go/no-go training. To this end, 
eighty-six participants completed both food go/no-go training and a 
food choice task in a functional magnetic resonance imaging (fMRI) 
scanner. We then examined neural activity in both go/no-go training 

and the food choice task in relation to food preference changes following 
training. For the analyses predicting preference changes from go/no-go 
training imaging data, we examined training-related brain activity (i.e., 
neural activity differentiating go vs. no-go foods as a function of training 
phase [late vs. early]) as a predictors of food preference changes. For the 
food choice imaging results, we examined neural activity differentiating 
go vs. no-go food choices as predictors of food preference changes. We 
also examined task-related functional connectivity indicative of 
training-induced changes in food preferences via generalized psycho-
physiological interactions (gPPI) (McLaren et al., 2012). Drawing on the 
work described above (e.g., Yang et al., 2021) and the value-updating 
account (e.g., Veling et al., 2022), we expected activity and functional 
connectivity changes in reward network during go/no-go training 
(contrast of interest: [go foods – no-go foods] – [late training phase – 
early training phase]) and the food choice task (contrast of interest: [go 
food chosen – no-go food chosen]) to predict changes in food 
preferences. 

2. Methods 

2.1. Participants 

Female undergraduate students from Southwest University were 
recruited via on-campus advertisements. We only recruited female 
participants because of logistical constraints—it is difficult to find male 
students (relative to female undergraduate students) willing to partici-
pate in psychology studies at Southwest University. We do note, though, 
that female participants have been historically underrepresented in 
research, and less is known about them as a result, which highlights the 
importance of studying women (Holdcroft, 2007; Sugimoto et al., 2019). 
Participants who reported current mental disorders, eating disorders, 
and/or head injuries were excluded. We intended to recruit around 
eighty subjects, based on a previous study which found a preference 
change effect of food go/no-go training (Chen et al., 2019). Our final 
sample consisted of N = 86 participants with valid behavioral data. 

Of the 86 participants, two were excluded from imaging analysis due 
to scan error. In addition, two participants in the food go/no-go training, 
and six participants in the food choice task were excluded due to motion 
(e.g., displacement of >3 mm in any plane and rotation of >3◦ in any 
direction). Therefore, our analyses consisted of 86 participants for 
behavioral data, 82 participants for the food go/no-go training imaging 
data, and 78 participants for the food choice imaging data. 

2.2. Procedure 

Before coming into the lab, participants were instructed to fast for 3 h 
(drinking water was allowed). Upon arrival, the participants provided 
informed consent and completed demographic and fasting question-
naires. Those who did not adhere to the fasting requirement were 
excluded. Participants then completed short, practice versions of the 
food go/no-go training and the food choice task, before completing the 
formal experimental tasks (see see Fig. 1 for the sequence of main 
experimental tasks). A detailed description of each task appears below. 

2.3. Measurements 

2.3.1. fMRI data acquisition 
Structural and functional images were acquired on a 3T Prisma 

Siemens Trio MRI scanner using a 64-chanel brain coil at Southwest 
University. High-resolution T1-weighted structural images were ac-
quired using a magnetization prepared rapid acquisition gradient-echo 
(MPRAGE) sequence: TR = 2530 ms, TE = 2.98 ms, FOV = 224 ×
256 mm2, resolution matrix = 448 × 512, flip angle = 7

◦

, slices = 192, 
thickness = 1.0 mm, inversion time = 1100 ms, voxel size = 0.5 × 0.5 ×
1 mm3. During the functional task, blood oxygen level dependent 
(BOLD) imaging was performed using a single shot echo-planar imaging 
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Fig. 1. The sequence of main experimental tasks. (1) Evaluation task; (2) The go/no-go training; (3) Food choice task.  
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(EPI) sequence (TR = 2000 ms; TE = 30 ms; flip angle = 90◦; FOV = 224 
× 224 mm2; matrix size = 64 × 64; voxel size = 2.0 × 2.0 × 2.0 mm3; 
Slices = 62; thickness = 2.0 mm). Resting-state data were not collected. 

2.3.2. Pre-training food evaluation 
The participants were randomly presented with 40 color images of 

candies (e.g., gummies, chocolates) one by one. Images were presented 
in the center of the screen, with the question, ‘how much do you want to 
eat this candy right now?’ presented at the bottom of the screen. Par-
ticipants responded to each image prompt by clicking on a 200-point 
visual analogue scale, with the range 0 (not at all) to 2(very much) 
displayed to participants (Chen et al., 2019). The food image remained 
on the screen until participants pressed a key (‘continue’) to confirm 
their rating and moved on to the next question. 

2.3.3. Item selection 
For each participant, candy pictures were rank-ordered from 1 

(highest value) to 40 (lowest value) based on their evaluations. Then, 12 
items (ranked 3–14) were selected for the GNG and food choice task. Six 
of the 12 items (i.e., items 3, 6, 7, 10, 11, 14) were chosen to be go items, 
and the remaining six were no-go items (i.e., items 4, 5, 8, 9, 12, 13). 

2.3.4. Go/no-go training 
The training task was similar to previous published studies (e.g., 

Chen et al., 2019; Yang et al., 2021). The 12 selected pictures (described 
above) were used for training. During the task, each picture was 
pseudo-randomly presented individually on the middle of a computer 
screen for up to 1000 ms, followed by a 1000–4000 ms inter-stimulus 
interval. A green or grey rectangular frame appeared around the pic-
ture 100 ms after picture onset, and it was visible for the remainder of 
the time that the picture was displayed. If the rectangular frame sur-
rounding the picture was green, participants were asked to press a 
button on an MRI-compatible response box as quickly and accurately as 
possible to respond. However, if the rectangular frame surrounding the 
picture was grey, they were told that they should not respond. The 
training session consisted of six blocks with 24 trials per block (i.e., 12 
go trials and 12 no-go trials per block; total of 144 trials across all 
blocks), and it took approximately 12 min to complete. The participants 
were allowed a break after finishing half of the training. 

2.3.5. Food choice task 
Participants also completed the food choice task in the scanner. On 

each trial, a pair of foods that had similar initial rankings (i.e., one go 
food, one no-go food) were pseudo-randomly presented side by side. 
Participants were told that they should choose the item they want within 
1.5 s by pressing the corresponding one of two buttons on an MRI- 
compatible response box. After each choice, the chosen item was sur-
rounded by a black rectangle for 500 ms as confirmation. A 1–4 s 
intertrial interval occurred between each trial during which a blank 
screen with a fixation cross was presented. The whole task consisted of 
two blocks of 36 trials each (72 total trials) and took approximately 7 
min to complete. Participants were allowed a break after finishing half 
of the task. 

2.4. Statistical analyses 

2.4.1. Behavioral data analysis 
Behavioral data were analyzed using R version 3.6.2. Multilevel lo-

gistic regression was conducted at the participants level as the main 
analysis (Formula: choice = 1 + (1 | subject)) (Bates et al., 2015). The 
probe in the food choice task was coded as: choosing go food = 1, 
choosing no-go food = 0. 

2.4.2. Neuroimaging analyses 
fMRI data preprocessing was performed using data processing and 

analysis for brain imaging (DPABI) (Yan et al., 2016), in the following 

manner. First, slice timing and head motion corrections. Subsequently, 
each participant’s structural images were co-registered to the mean 
functional image functional images. Then functional images were 
normalized to the standard Montreal Neurological Institute space. 
Finally, spatial smoothing was performed with a Gaussian kernel of 8 
mm at full width half-maximum. 

Neuroimaging data were analyzed using statistical parametric 
mapping (SPM12) (https://www.fil.ion.ucl.ac.uk/spm/). For the 
training image analyses, four regressors of interest—namely, go foods in 
the first two blocks (i.e., early training phase), no-go foods in the first 
two blocks, go foods in the last two blocks (i.e., late training phase), no- 
go foods in the last two blocks—and six motion regressors were modeled 
in the first-level using the general linear model, with delta functions 
convolved with a canonical hemodynamic response function (HRF). 
Next, we modeled for each participant the interaction contrast between 
Go > No-go and Late phase > Early phase. These resulting contrast 
images were used in second-level analyses, where multiple linear 
regression was conducted to identify brain activations correlated with 
changes in food preferences (i.e., the probability of choosing “go” 
foods). For the food choice task image analyses, two regressors of in-
terest (chose go, chose no-go) and six motion regressors were modeled in 
the first-level. Next, we modeled for each participant the contrast of 
chose go > chose no-go. These resulting contrast images were used in 
second-level analyses, where multiple linear regression was conducted 
to identify brain activations correlated with changes in food preferences 
(i.e., the probability of choosing “go” foods). We used a cluster-level 
family wise error rate (FWE)-corrected threshold of p < .05, and a 
voxel-wise threshold of p < .001 to identify significant clusters. 

2.5. Task-modulated connectivity predicts preference change 

We conducted generalized psychophysiological interaction (gPPI) 
analyses (McLaren et al., 2012) to examine event-related functional 
connectivity. The gPPI model consisted of a physiological term (the time 
series of a seed region), psychological terms (HRF convolved the main 
effect of the condition of interest, e.g., go and no-go), and PPI terms 
(deconvolved raw time series of the seed multiplied by the main effect of 
the condition of interest, and then convolved with HRF). The significant 
brain activations that emerged from whole-brain analyses mentioned 
above were used as regions of interests (ROIs) for gPPI analyses. In the 
analysis, one of the ROIs was used as a seed, the rest were used as tar-
gets, and gPPI describes the task related change in influence of a seed on 
a target region; the outcome is an asymmetrical effective connectivity 
matrix. To test whether task-modulated connectivity was related to the 
preference change, we extracted the gPPI parameters (e.g., contrast of 
interest, go versus no-go). This procedure resulted in a task-modulated 
functional connectivity matrix for each participant, and we performed 
a Pearson’s correlation analysis between the functional connectivity 
matrices and the preference change scores. These statistics were false 
discovery rate (FDR)-corrected for multiple comparisons. We also used 
another statistic to correct for multiple comparisons (network-based 
statistic, NBS) (Zalesky et al., 2010), please see supplementary materials 
for these results. 

2.6. Ethics 

All participants gave written informed consent for their participa-
tion. The study was approved by the local ethics committees of South-
west University. 

3. Results 

3.1. Demographic information 

The mean age of this sample was 20.5 years (SD, 1.60; range, 18–25 
years). The mean BMI was 20.6 (SD, 2.22; range, 16.1–26.0; three 
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participants were overweight). 

3.2. Behavioral results 

3.2.1. Performance during go/no-go training 
Participants made very few errors during training: for accuracy on go 

trials, mean (M) = 98.34%, standard deviation (SD) = 3.64%; for ac-
curacy on no-go trials, M = 99.06%, SD = 1.09%. Go reaction time was 
M = 380.05 ms, SD = 46.23 ms. 

3.2.2. Stimulus evaluation 
A paired t-test showed that the average ratings of go (M = 1.351, SD 

= 0.37) and no-go (M = 1.348, SD = 0.37) pictures were matched before 
the training, t(85) = 1.13, p = .263. 

3.2.3. Probe in food choice task 
Multilevel logistic regression showed that participants chose go 

foods significantly more often over no-go foods, mean proportion of go 
foods = 57.92%, OR = 1.49, 95% CI [1.20, 1.84], p = 3.21 × 10− 4 

(Fig. 2). 

3.3. Neural activity 

To probe the neural signature of preference changes following food 
go/no-go training, we examined neural activity during choices of go (vs. 
no-go) foods following training in relation to the probability of choosing 
“go” foods (Table 1, Fig. 3). We found that activities in the right pre- 
supplementary motor cortex (Pre-SMA), right dorsal anterior cingulate 
cortex (dACC), bilateral anterior insula (AI), left inferior frontal gyrus 
(IFG), left middle frontal gyrus (MFG), bilateral inferior parietal lobule 
(IPL), bilateral superior parietal lobule (SPL), left inferior temporal 
gyrus (ITG), right middle temporal gyrus (MTG), and left cerebellum to 
go versus no-go choices were negatively correlated with the probability 
of choosing go foods (or positively correlated with the probability of 
choosing no-go foods). 

To determine the magnitudes of the above associations, we extracted 
activity from each of these clusters as defined by 6 mm-radius spheres 
centered at each cluster’s peak. FDR-correction was used to correct for 
the number of tests. Results revealed that greater probability of choosing 
go foods was significantly associated with lower activities in the Pre- 
SMA (r = − 0.53, p corrected = 7.5 × 10− 6), dACC (r = − 0.52, p corrected 
= 7.5 × 10− 6), AI (r’s = − 0.48, − 0.39, p’s corrected = 3.8 × 10− 5, 8.3 ×

10− 4), IFG (r = − 0.48, p corrected = 3.8 × 10− 5), MFG (r’s = − 0.35, 
− 0.43, p’s corrected = 0.003, 2.5 × 10− 4), IPL (r’s = − 0.41, − 0.44, − 0.40, 
p’s corrected = 4.3 × 10− 4, 1.8 × 10− 4, 5.6 × 10− 4), SPL (r’s = − 0.35, 
− 0.33, p’s corrected = 0.003, 0.004), ITG (r = − 0.34, p corrected = .004, 
MTG (r = − 0.33, p corrected = .004), and cerebellum (r = − 0.26, p corrected 
= .019) (Fig. 4). 

3.4. Food choice task-related functional connectivity 

Next, we aimed to understand whether and how preference changes 
might be reflected by food choice task-related functional connectivity. 
To do so, we performed gPPI analysis using significant activations that 
emerged from the whole brain univariate analyses (Table 1) as ROIs. The 
results indicated that probability of choosing go foods was significantly 
and positivity correlated with the functional connectivities from IPL to 
Pre-SMA (r = 0.49, p corrected = .002) (Fig. 5 A & B), MFG (r = 0.39, p 
corrected = .047) (Fig. 5 A & C) and dACC (r = 0.38, p corrected = .047) 
(Fig. 5 A & D) during choices of go compared with choices of no-go 
foods. 

3.5. Go/no-go training phase 

We also examined whether BOLD activities toward go foods in 
comparison to no-go foods during the late phase compared with early 
phase of go/no-go training was correlated with the probability of 
choosing go foods during the food choice task. Contrary to expectations, 
no effects survived after the FWE-correction. 

4. Discussion 

To the best of our knowledge, our study is the first to use fMRI to 
examine the neural bases of the preference changes induced by food go/ 
no-go training. Behaviorally, we found that food go/no-go training 
resulted in a preference change, in that participants chose more go than 
no-go foods following training. On a neural level, we found that reduced 
activations in the network and the salience network, but increased 
functional connectivities from the IPL to the pre-SMA, MFG/dorsolateral 
frontal cortex (DLPFC), and dACC during the binary choice phase were 
associated with these preference changes. Taken together, the present 
study suggests that a neural pathway centered on areas traditionally 
associated with selective attention may interface with prefrontal regions 
to guide preference changes induced by food go/no-go training. 

These results are promising from a clinical perspective, as food go/ 
no-go training is simple: It does not rely on self-control, but on basic 
action or inaction. This simplicity should help to make food go/no-go 
training more easily applicable to populations with relatively lower 
executive control, such as those with obesity (e.g., Yang et al., 2018; 
Yang et al., 2023), whereby food go/no-go training could be used to 
enhance preferences towards certain stimuli, such as healthy foods. For 
example, Chen et al., 2019 (Experiment 7) used healthy foods as go 
items and unhealthy foods as no-go items, and they found that food 
go/no-go training can promote healthy food choices in comparison with 
when both items were untrained, suggesting that food go/no-go training 
can work with less appetitive stimuli (e.g., healthy food). 

The behavioral choice results obtained in the current study are in line 
with those obtained by prior studies using food go/no-go training (Chen 
et al., 2019, 2021) or cue-approach training (e.g., Itzkovitch et al., 2022; 
Schonberg et al., 2014), in that participants showed enhanced prefer-
ences towards go compared to no-go foods. Taken together, the existing 
body of literature supports the idea that simple training of action or 
inaction to certain stimuli can change individuals’ preferences related to 
these stimuli. Indeed, the behavioral effect we observed (i.e., a proba-
bility of go over no-go of 57%) was similar in magnitude to previous 
work using food go/no-go training or cue-approach training (see 
Carbine & Larson, 2019, and Itzkovitch et al., 2022 for overviews of 
similar studies), indicating that the food preference change effect is 

Fig. 2. The behavioral results of Go choices during probe task: the mean pro-
portion of trials in which participants chose Go over No-Go foods are presented. 
The dashed line indicates the equal preference level of 50%; error bars repre-
sent standard error of the mean. The asterisks reflect the statistical significance 
in a repeated-measures logistic regression. ***: p＜.001. 
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Table 1 
All Choose Go > Choose No-Go activity correlated with the probability of choosing go foods.  

Cluster index Correlation direction Region Cluster Size X Y Z Peak Z-value  

Positive None None     
1 Negative Right Pre-supplementary motor cortex 2614 6 21 45 6.83 

Right Dorsal anterior cingulate cortex  3 27 33  
Right Anterior insula  30 24 3  

2 Negative Left Inferior frontal gyrus 616 − 45 12 − 3 6.23 
Left Anterior insula  − 33 15 − 12  
Left Middle frontal gyrus  − 42 45 12  

3 Negative Left Middle frontal gyrus 388 − 45 27 33 5.34   
− 48 12 30  

4 Negative Right Inferior parietal lobe 221 36 − 54 45 5.19   
48 − 45 42    
51 − 36 39  

5 Negative Left Inferior parietal lobe 213 − 30 − 51 36 5.56   
− 27 − 66 39  

6 Negative Left Cerebellum 171 − 36 − 72 − 45 4.41   
− 30 − 66 − 33    
− 33 − 69 − 9  

7 Negative Left Inferior temporal gyrus 168 − 42 − 51 − 12 4.87   
− 51 − 60 − 15  

8 Negative Right Superior parietal lobule 164 6 − 69 42 5.18 
Left Superior parietal lobule  − 3 − 66 36    

− 6 − 72 45  
9 Negative Right Inferior parietal lobe 117 60 − 60 30 4.97   

57 − 45 27    
66 − 51 21  

10 Negative Right Middle temporal gyrus 91 63 − 33 − 18 4.40   
66 − 33 − 6   

Fig. 3. Food choice imaging results. After training, the probability of choosing go (vs. no-go) foods correlated with the BOLD response to go foods over no-go foods in 
several regions, including (a) right pre-supplementary motor cortex, (b) right dorsal anterior cingulate cortex, (c&e) bilateral anterior insula, (d) left inferior frontal 
gyrus, (f&g) left middle frontal gyrus, (h&i&n) bilateral inferior parietal lobule, (l&m) bilateral superior parietal lobule, (k) left inferior temporal gyrus, (o) right 
middle temporal gyrus, and (j) left cerebellum. 
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reproducible. 
Several explanations have been offered for why food go/no-go 

training might contribute to preference changes (Chen et al., 2018; 
Johannes et al., 2021; Stice et al., 2016; Veling et al., 2017, 2022). For 
example, training may alter evaluations of go and no-go items, 
increasing valuations of go items (Chen et al., 2016) but decreasing 
valuations of no-go items (Yang et al., 2022). As a result, when given a 
choice between go and no-go items, participants might favor go over 
no-go items. Alternatively, repeatedly inhibiting responses toward no-go 
items and responding to go items during training may lead to the for-
mation of stimulus-response associations (e.g., go items with the 
response of action, no-go items with the response of stopping) (Johannes 
et al., 2021; Veling et al., 2017; Verbruggen et al., 2014). Participants 
therefore may more easily respond to go vs. no-go items in a binary 
choice task after food go/no-go training. 

On a neural level, we found negative correlations between go (vs. no- 
go) activities in the pre-SMA, dACC, AI, IFG, MFG, IPL, SPL, and other 
regions during the food choice task and individual differences in the 
preference change effect. The dACC and AI/IFG are core areas within the 
salience network, which plays a crucial role in conflict monitoring or 
error detection (Botvinick & Carter, 2001; Koban & Pourtois, 2014). The 
pre-SMA, MFG/DLPFC, and posterior parietal cortex (e.g., IPL, SPL) 
belong to the frontoparietal network and are known to be involved in 

executive control or behavioral adjustment following the experience of 
conflict (Mansouri et al., 2007, 2009). 

The pattern of results we observed differs from neuroimaging work 
with cue-approach training, which has primarily found that activities in 
regions related to encoding reward (e.g., striatum) are related to pref-
erence changes. In particular, both Salomon et al. (2020) and Schonberg 
et al. (2014) found that, after cue-approach training, individual differ-
ences in ventromedial prefrontal cortex activity during go (vs. no-go) 
choices were positively correlated with the individual differences in 
the number of go stimuli choices. However, another study with 
cue-approach training (Botvinik-Nezer et al., 2020) failed to replicate 
this result, instead finding that BOLD activity in the striatum was 
negatively correlated with the preference change effect across partici-
pants. Taken together, it seems that, although both cue-approach and 
food go/no-go training involve responding and not responding to certain 
stimuli, the neural mechanisms underlying these two training effects 
may be different. 

The associations of the salience and frontoparietal networks with the 
preference change effect we observed within current study could be 
explained by the stimulus-response account. As described above, this 
account proposed that food go/no-go training could establish an asso-
ciation of go items with the action of responding, and an association of 
no-go items with not responding (Johannes et al., 2021; Veling et al., 

Fig. 4. Greater probability of choosing go foods was significantly associated with lower activities in the right pre-supplementary motor cortex, right dorsal anterior 
cingulate cortex, bilateral anterior insula, left inferior frontal gyrus, left middle frontal gyrus, bilateral inferior parietal lobule, bilateral superior parietal lobule, left 
inferior temporal gyrus, right middle temporal gyrus, and left cerebellum. 
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2017; Verbruggen et al., 2014). Therefore, choosing go foods over no-go 
foods is consistent with participants’ already “learned reflex” (e.g., go 
foods = respond, no-go foods = stop). Furthermore, the proportion of 
trials go foods were chosen was higher for participants who developed 
stronger contingencies for go and no-go foods and consequently they 
might precepted less conflict or uncertainty (Stojić et al., 2020) when 
choosing go foods and rejecting no-go foods for consumption, which was 
reflected by less activations in the conflict perception (e.g., salience 
network) and resolution (frontoparietal network) regions for them. 

In contrast, the value-updating account suggests that food go/no-go 
training influences preferences by decreasing liking of no-go items, and/ 
or increasing liking of go times (Chen et al., 2018a; Johannes et al., 
2021; Veling et al., 2022; Yang et al., 2022). We did not find significant 
correlations between the preference change effect and the brain regions 
related to reward processing (e.g., striatum) during the training or the 
food choice task. Therefore, the training and food choice imaging results 
of current study did not support the value-updating account. However, it 
should be noted that the present experimental setup may not be ideal for 
testing the theoretical predictions of the value-updating account, and it 
is possible that other tasks could produce striatal activity indicative of 
dis/liking that our study was unable to detect. Future studies could use 
other tasks, such as a passive viewing task (e.g., pictures of snack food 
items are individually presented on the screen) (e.g., Botvinik-Nezer 
et al., 2020; Yang et al., 2021), and examine correlations between 
preference changes and neural changes to go versus no-go items pre-to 
post-training. 

A further interesting neural signature of preference changes 
observed in current study was the functional connectivities from the IPL 
to the pre-SMA, DLPFC, and dACC in relation to preference changes. In 
contrast to the negative univariate efg. fects, the functional connectiv-
ities observed in current study were positively related to relatively more 
choices for go than no-go foods, suggesting that both brain activations 
and functional couplings contributed to the ‘successful’ food go/no-go 
training-induced preference changes. The IPL plays an important role 
in mediating the automatic allocation of attention to task/behavior- 

relevant information (Corbetta & Shulman, 2002; Seghier, 2013). As 
mentioned earlier, the frontal regions including pre-SMA, DLPFC, and 
dACC are commonly implicated in cognitive control processes such as 
conflict detection and response inhibition (Botvinick & Braver, 2015), as 
well as in selecting appropriate motor/behavioral responses (Kouneiher 
et al., 2009; Vassena et al., 2020). Thus, one possibility is that connec-
tivities from the IPL to the pre-SMA, DLPFC, and dACC may indicate 
selective-attention-driven behavioral effects. That is, in the food choice 
phase, the go foods (compared to the no-go foods) may have been 
deemed more behaviorally relevant, given that they were frequently 
acted upon in the food go/no-go training phase (Schonberg & Katz, 
2020). Therefore, successful selective attention-based behavioral pref-
erence toward the go foods, reflected by increased modulation from IPL 
to the prefrontal regions, may have led to the relatively greater prefer-
ence for go foods. Our connectivity result is in accordance with the 
dorsal value pathway (DVP) model of nonreinforced preference change 
(Schonberg & Katz, 2020), which proposes that higher perceptual and 
attentional regions might play an important role in the effect induced by 
nonreinforced training tasks. Taken together, our results show that, 
similar to the (neural) mechanisms of other nonreinforcement trainings, 
such as cue-approach training, a neural pathway centered on areas 
traditionally associated with selective attention may interface with 
prefrontal regions to guide preference changes induced by 
food-go/no-go training. 

4.1. Limitations 

Our study has several limitations. First, we recruited a sample of 
female participants, which limits generalizability to male samples. 
Second, we only assessed immediate traning effects. Future studies 
could examine the long-term changes (e.g., 1-month follow-up) after 
food go/no-go traning. Third, the study sample was not based on power 
analysis, but on the sample size of a previous study which found changes 
in food preferences following go/no-go training, and our study was not 
preregistered. In addition, we did not assess participants’ dieting 

Fig. 5. Results from the generalized psychophysiological interaction (gPPI) functional connectivity analysis. (A) The functional connectivities from the left inferior 
parietal lobule (IPL) to the right pre-supplementary motor cortex (pre-SMA), right dorsal anterior cingulate cortex (dACC), and left middle frontal gyrus (MFG) 
during go choices versus no-go choices significantly related to preference change scores. (B) Specifically, the correlations between the connectivities and preference 
change scores were positive. These statistics were false discovery rate-corrected for multiple comparisons. Scatter plots are for the purpose of data visualization only. 
Times series data in regions of interest were missing in two participants, in turn, seventy-four participants were included in the gPPI analysis. 
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statuses. Finally, the training used foods with a relatively high value. 
Future studies are needed to examine the potential neural mechanisms 
of food go/no-go training-induced preference changes for low-value 
items (e.g., healthy food items). 

5. Conclusion 

To summarize, dovetailing with previous studies, current work 
supports that food go/no-go training reliably changes people’s prefer-
ences. On the neural level, we found for the first time that less activity 
within frontoparietal and salience network regions, but greater func-
tional connectivities from the IPL to the pre-SMA, DLPFC, and dACC 
during go (vs. no-go) food choices is related to individuals’ preference 
changes. Together, these findings suggest that bottom-up neural mech-
anisms may underpin changes in food preferences following go/no-go 
training. 
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